top of page

Elektronski testeri

Electronic Testers
Digital Multimeters

Pod pojmom ELEKTRONSKI TESTER podrazumijevamo ispitnu opremu koja se prvenstveno koristi za ispitivanje, inspekciju i analizu električnih i elektronskih komponenti i sistema. Nudimo najpopularnije u industriji:

NAPAJANJA I UREĐAJI ZA GENERACIJU SIGNALA: NAPAJANJE, GENERATOR SIGNALA, SINTIZATOR FREKVENCIJE, GENERATOR FUNKCIJA, GENERATOR DIGITALNIH OBRAZA, GENERATOR PULS, INJEKTOR SIGNALA

MJERI: DIGITALNI MULTIMETRI, LCR METAR, EMF METAR, MJERAČ KAPACITNOSTI, INSTRUMENT ZA MOST, STEZALJKE, GAUSMETAR / TESLAMETAR / MAGNETOMETER, METAR OTPORA UZETE

ANALIZATORI: OSCILOSKOPI, LOGIČKI ANALIZATOR, ANALIZATOR SPEKTRA, ANALIZATOR PROTOKOLA, ANALIZATOR VEKTORSKIH SIGNALA, REFLEKTOMETAR VREMENSKOG DOMA, TRAGAČ POLUPROVODIČKE KRIVULE, ANALIZATOR MREŽE, FAZNI ANALIZATOR, FAZNI REFEKTOR

Za detalje i drugu sličnu opremu, posjetite našu web stranicu opreme: http://www.sourceindustrialsupply.com

Hajde da ukratko pregledamo neke od ovih uređaja u svakodnevnoj upotrebi u industriji:

 

Električni izvori napajanja koje isporučujemo za potrebe mjeriteljstva su diskretni, stoni i samostalni uređaji. PODESIVI REGULISANI NAPAJANJA ZA ELEKTRIČNO NAPAJANJE su neki od najpopularnijih, jer se njihove izlazne vrijednosti mogu podesiti i njihov izlazni napon ili struja održavaju konstantnim čak i ako postoje varijacije u ulaznom naponu ili struji opterećenja. IZOLOVANA NAPAJANJA imaju izlaznu snagu koja je električki nezavisna od njihove ulazne snage. U zavisnosti od njihovog načina pretvaranja energije, razlikuju se LINEARNI i PREKIDNI NAPAJANJA. Linearni izvori napajanja obrađuju ulaznu snagu direktno sa svim svojim komponentama aktivne konverzije snage koje rade u linearnim područjima, dok prekidačka napajanja imaju komponente koje pretežno rade u nelinearnim modovima (kao što su tranzistori) i pretvaraju snagu u AC ili DC impulse prije obrada. Prekidački izvori napajanja su općenito efikasniji od linearnih jer gube manje energije zbog kraćeg vremena koje njihove komponente provode u linearnim operativnim područjima. Ovisno o primjeni, koristi se DC ili AC napajanje. Drugi popularni uređaji su PROGRAMABILNA NAPAJANJA, gdje se napon, struja ili frekvencija mogu daljinski kontrolirati preko analognog ulaza ili digitalnog interfejsa kao što je RS232 ili GPIB. Mnogi od njih imaju ugrađeni mikroračunar za praćenje i kontrolu operacija. Takvi instrumenti su neophodni za svrhe automatizovanog testiranja. Neki elektronički izvori napajanja koriste ograničenje struje umjesto prekida napajanja kada su preopterećeni. Elektronsko ograničavanje se obično koristi na instrumentima tipa laboratorijskog stola. GENERATORI SIGNALA su još jedan instrument koji se široko koristi u laboratoriji i industriji, generirajući ponavljajuće ili neponavljajuće analogne ili digitalne signale. Alternativno se nazivaju i FUNKCIONALNI GENERATORI, GENERATORI DIGITALNIH OBRAZA ili GENERATORI FREKVENCIJE. Generatori funkcija generiraju jednostavne ponavljajuće valne oblike kao što su sinusni valovi, koračni impulsi, kvadratni i trouglasti i proizvoljni valni oblici. Sa generatorima proizvoljnih talasnih oblika korisnik može da generiše proizvoljne talasne oblike, unutar objavljenih granica frekvencijskog opsega, tačnosti i izlaznog nivoa. Za razliku od generatora funkcija, koji su ograničeni na jednostavan skup valnih oblika, generator proizvoljnog valnog oblika omogućava korisniku da specificira izvorni talasni oblik na različite načine. GENERATORI RF i MIKROTALASNIH SIGNALA koriste se za testiranje komponenti, prijemnika i sistema u aplikacijama kao što su mobilne komunikacije, WiFi, GPS, radiodifuzije, satelitske komunikacije i radari. Generatori RF signala općenito rade između nekoliko kHz do 6 GHz, dok generatori mikrovalnih signala rade u mnogo širem frekventnom opsegu, od manje od 1 MHz do najmanje 20 GHz, pa čak i do stotina GHz opsega koristeći poseban hardver. Generatori RF i mikrovalnih signala mogu se dalje klasificirati kao generatori analognih ili vektorskih signala. GENERATORI AUDIO-FREKVENCIJSKOG SIGNALA generišu signale u opsegu audio frekvencija i više. Imaju elektronske laboratorijske aplikacije za provjeru frekvencijskog odziva audio opreme. GENERATORI VEKTORSKOG SIGNALA, koji se ponekad nazivaju i GENERATORIMA DIGITALNOG SIGNALA, sposobni su za generiranje digitalno moduliranih radio signala. Vektorski generatori signala mogu generirati signale zasnovane na industrijskim standardima kao što su GSM, W-CDMA (UMTS) i Wi-Fi (IEEE 802.11). GENERATORI LOGIČKOG SIGNALA se takođe nazivaju GENERATORI DIGITALNIH OBRAZA. Ovi generatori proizvode logičke tipove signala, odnosno logičke 1 i 0 u obliku konvencionalnih nivoa napona. Generatori logičkih signala se koriste kao izvori stimulusa za funkcionalnu validaciju i testiranje digitalnih integrisanih kola i ugrađenih sistema. Gore navedeni uređaji su za opštu upotrebu. Međutim, postoji mnogo drugih generatora signala dizajniranih za specifične aplikacije. SIGNALNI INJEKTOR je vrlo koristan i brz alat za rješavanje problema za praćenje signala u strujnom kolu. Tehničari mogu vrlo brzo odrediti neispravnu fazu uređaja kao što je radio prijemnik. Injektor signala se može primijeniti na izlaz zvučnika, a ako se signal čuje može se preći na prethodni stupanj kola. U ovom slučaju audio pojačalo, a ako se ubrizgani signal ponovo čuje, može se pomjeriti ubrizgavanje signala naviše po stupnjevima kola sve dok se signal više ne čuje. Ovo će služiti u svrhu lociranja lokacije problema.

MULTIMETER je elektronski mjerni instrument koji kombinuje nekoliko mjernih funkcija u jednoj jedinici. Općenito, multimetri mjere napon, struju i otpor. Dostupne su i digitalne i analogne verzije. Nudimo prenosive ručne multimetre, kao i modele laboratorijskog kvaliteta sa sertifikovanom kalibracijom. Moderni multimetri mogu mjeriti mnoge parametre kao što su: napon (i AC/DC), u voltima, struja (oba AC/DC), u amperima, otpor u omima. Dodatno, neki multimetri mjere: Kapacitet u faradima, Konduktivnost u simensu, Decibele, Duty ciklus kao postotak, Frekvenciju u hercima, Induktivnost u henriju, temperaturu u stepenima Celzijusa ili Farenhajta, koristeći sondu za ispitivanje temperature. Neki multimetri takođe uključuju: Tester kontinuiteta; zvukove kada strujno kolo vodi, diode (mjere naprijed pad diodnih spojeva), tranzistori (mjere strujno pojačanje i druge parametre), funkciju provjere baterije, funkciju mjerenja nivoa svjetlosti, funkciju mjerenja kiselosti i alkalnosti (pH) i funkciju mjerenja relativne vlažnosti. Moderni multimetri su često digitalni. Moderni digitalni multimetri često imaju ugrađeni računar koji ih čini vrlo moćnim alatima u mjeriteljstvu i ispitivanju. Oni uključuju karakteristike kao što su:

 

•Automatsko određivanje raspona, koje bira ispravan opseg za količinu koja se testira tako da se prikazuju najznačajnije cifre.

 

•Auto-polaritet za očitanja jednosmjerne struje, pokazuje da li je primijenjeni napon pozitivan ili negativan.

 

•Uzorak i zadržavanje, koji će zaključati najnovije očitanje za ispitivanje nakon što se instrument ukloni iz kola koje se testira.

 

•Strujno ograničeni testovi za pad napona na poluprovodničkim spojevima. Iako nije zamjena za tester tranzistora, ova karakteristika digitalnih multimetara olakšava testiranje dioda i tranzistora.

 

• Grafički prikaz količine koja se testira za bolju vizualizaciju brzih promjena izmjerenih vrijednosti.

 

• Osciloskop sa malim propusnim opsegom.

 

• Testeri automobilskih kola sa testovima za automobilsko vreme i signale zadržavanja.

 

• Funkcija prikupljanja podataka za snimanje maksimalnih i minimalnih očitavanja u datom periodu i za uzimanje određenog broja uzoraka u fiksnim intervalima.

 

• Kombinovani LCR mjerač.

 

Neki multimetri mogu biti povezani sa računarima, dok neki mogu pohraniti mjerenja i prenijeti ih na računar.

 

Još jedan vrlo koristan alat, LCR METER je mjeriteljski instrument za mjerenje induktivnosti (L), kapacitivnosti (C) i otpora (R) komponente. Impedansa se interno meri i konvertuje za prikaz u odgovarajuću vrednost kapacitivnosti ili induktivnosti. Očitavanja će biti prilično točna ako kondenzator ili induktor koji se testiraju nemaju značajnu otpornu komponentu impedanse. Napredni LCR mjerači mjere stvarnu induktivnost i kapacitivnost, kao i ekvivalentni serijski otpor kondenzatora i Q faktor induktivnih komponenti. Uređaj koji se testira je podvrgnut izvoru izmjeničnog napona, a mjerač mjeri napon i struju kroz testirani uređaj. Iz omjera napona i struje mjerač može odrediti impedanciju. Fazni ugao između napona i struje se takođe meri u nekim instrumentima. U kombinaciji sa impedancijom, ekvivalentna kapacitivnost ili induktivnost i otpor testiranog uređaja mogu se izračunati i prikazati. LCR mjerači imaju izborne testne frekvencije od 100 Hz, 120 Hz, 1 kHz, 10 kHz i 100 kHz. Stolni LCR mjerači obično imaju izborne testne frekvencije veće od 100 kHz. Oni često uključuju mogućnosti da se DC napon ili struja preklapa sa mjernim signalom naizmjenične struje. Dok neka brojila nude mogućnost eksternog napajanja ovim istosmjernim naponima ili strujama, drugi uređaji ih opskrbljuju interno.

 

EMF METER je ispitni i metrološki instrument za mjerenje elektromagnetnih polja (EMF). Većina njih mjeri gustinu fluksa elektromagnetnog zračenja (DC polja) ili promjenu elektromagnetnog polja tokom vremena (AC polja). Postoje jednoosni i troosni instrumenti. Jednoosni mjerači koštaju manje od troosnih mjerača, ali im je potrebno više vremena za završetak testa jer mjerač mjeri samo jednu dimenziju polja. EMF mjerači s jednom osom moraju biti nagnuti i okrenuti na sve tri ose da bi se završilo mjerenje. S druge strane, troosni mjerači mjere sve tri ose istovremeno, ali su skuplji. EMF mjerač može mjeriti AC elektromagnetna polja, koja izviru iz izvora kao što su električne žice, dok GAUSSMETRI / TESLAMETRI ili MAGNETOMETRI mjere istosmjerna polja koja se emituju iz izvora gdje je prisutna jednosmjerna struja. Većina EMF merača je kalibrisana za merenje naizmeničnih polja od 50 i 60 Hz koja odgovaraju frekvenciji električne struje u SAD i Evropi. Postoje i drugi mjerači koji mogu mjeriti polja koja se naizmjenično mijenjaju na čak 20 Hz. EMF mjerenja mogu biti širokopojasna u širokom rasponu frekvencija ili frekvencijsko selektivno praćenje samo frekvencijskog opsega od interesa.

 

MJERAČ KAPACITETA je ispitna oprema koja se koristi za mjerenje kapacitivnosti uglavnom diskretnih kondenzatora. Neki mjerači prikazuju samo kapacitivnost, dok drugi također pokazuju curenje, ekvivalentni serijski otpor i induktivnost. Instrumenti za testiranje više klase koriste tehnike kao što je umetanje kondenzatora koji se testira u premosni krug. Promjenom vrijednosti ostalih krakova u mostu kako bi se most doveo u ravnotežu, određuje se vrijednost nepoznatog kondenzatora. Ova metoda osigurava veću preciznost. Most takođe može biti sposoban da meri serijski otpor i induktivnost. Mogu se mjeriti kondenzatori u rasponu od pikofarada do farada. Mostna kola ne mjere struju curenja, ali se može primijeniti DC prednapon i curenje se mjeri direktno. Mnogi BRIDGE INSTRUMENTI se mogu povezati na računare i izvršiti razmjenu podataka za preuzimanje očitanja ili eksternu kontrolu mosta. Takvi instrumenti za premošćivanje nude i go/no go testiranje za automatizaciju testova u brzom proizvodnom okruženju i okruženju kontrole kvaliteta.

 

Ipak, drugi instrument za testiranje, CLAMP METER je električni tester koji kombinuje voltmetar sa strujomjerom tipa stezaljke. Većina modernih verzija mjerača stezaljki su digitalne. Moderni mjerači stezaljki imaju većinu osnovnih funkcija digitalnog multimetra, ali s dodatnom karakteristikom strujnog transformatora ugrađenog u proizvod. Kada stegnete "čeljusti" instrumenta oko provodnika koji vodi veliku naizmjeničnu struju, ta struja se spaja kroz čeljusti, slično gvozdenom jezgru energetskog transformatora, i u sekundarni namotaj koji je povezan preko šanta ulaza brojila. , princip rada koji je sličan transformatoru. Mnogo manja struja se isporučuje na ulaz brojila zbog odnosa broja sekundarnih namotaja i broja primarnih namotaja omotanih oko jezgra. Primarnu predstavlja jedan provodnik oko kojeg su čeljusti stegnute. Ako sekundar ima 1000 namotaja, tada je sekundarna struja 1/1000 struje koja teče u primarnom, ili u ovom slučaju u vodiču koji se mjeri. Dakle, 1 amper struje u provodniku koji se mjeri bi proizveo 0,001 ampera struje na ulazu mjerača. Sa stezaljkama se mogu lako izmjeriti mnogo veće struje povećanjem broja zavoja u sekundarnom namotu. Kao i kod većine naše opreme za testiranje, napredni mjerači stezaljke nude mogućnost snimanja. TESTERI OTPORNOSTI NA UZEMLJE koriste se za ispitivanje elektroda uzemljenja i otpornosti tla. Zahtjevi instrumenta zavise od opsega primjena. Moderni instrumenti za ispitivanje uzemljenja sa spojnicama pojednostavljuju ispitivanje petlje uzemljenja i omogućavaju neintruzivna mjerenja struje curenja.

Među ANALIZATORIMA koje prodajemo su OSCILOSKOPI bez sumnje jedan od najčešće korištenih uređaja. Osciloskop, koji se naziva i OSCILOGRAF, je vrsta elektronskog instrumenta za testiranje koji omogućava posmatranje konstantno promjenjivih napona signala kao dvodimenzionalni dijagram jednog ili više signala u funkciji vremena. Neelektrični signali poput zvuka i vibracija također se mogu pretvoriti u napone i prikazati na osciloskopima. Osciloskopi se koriste za promatranje promjene električnog signala tokom vremena, napon i vrijeme opisuju oblik koji se kontinuirano prikazuje na kalibriranoj skali. Posmatranje i analiza valnog oblika otkriva nam svojstva kao što su amplituda, frekvencija, vremenski interval, vrijeme porasta i izobličenje. Osciloskopi se mogu podesiti tako da se ponavljajući signali mogu posmatrati kao kontinuirani oblik na ekranu. Mnogi osciloskopi imaju funkciju skladištenja koja omogućava da pojedinačni događaji budu snimljeni od strane instrumenta i prikazani relativno dugo. Ovo nam omogućava da posmatramo događaje prebrzo da bismo bili direktno uočljivi. Moderni osciloskopi su lagani, kompaktni i prenosivi instrumenti. Tu su i minijaturni instrumenti na baterije za aplikacije terenskih usluga. Laboratorijski osciloskopi su uglavnom stoni uređaji. Postoji veliki izbor sondi i ulaznih kablova za upotrebu sa osciloskopima. Molimo kontaktirajte nas u slučaju da vam je potreban savjet o tome koji ćete koristiti u svojoj aplikaciji. Osciloskopi sa dva vertikalna ulaza nazivaju se osciloskopi sa dvostrukim tragom. Koristeći CRT sa jednim snopom, oni multipleksiraju ulaze, obično prelazeći između njih dovoljno brzo da prikažu dva traga naizgled odjednom. Postoje i osciloskopi sa više tragova; četiri ulaza su uobičajena među njima. Neki osciloskopi sa više tragova koriste vanjski ulaz za okidanje kao opcionalni vertikalni ulaz, a neki imaju treći i četvrti kanal sa samo minimalnim kontrolama. Moderni osciloskopi imaju nekoliko ulaza za napone i stoga se mogu koristiti za crtanje jednog promjenjivog napona naspram drugog. Ovo se koristi na primjer za crtanje IV krivulja (karakteristike struje u odnosu na napon) za komponente kao što su diode. Za visoke frekvencije i brze digitalne signale širina pojasa vertikalnih pojačala i brzina uzorkovanja moraju biti dovoljno visoki. Za opću upotrebu obično je dovoljan propusni opseg od najmanje 100 MHz. Mnogo niža propusnost dovoljna je samo za aplikacije sa audio frekvencijama. Korisni opseg sweepinga je od jedne sekunde do 100 nanosekundi, sa odgovarajućim okidanjem i kašnjenjem sweep. Za stabilan prikaz potreban je dobro dizajniran, stabilan, okidač. Kvalitet okidača ključan je za dobre osciloskope. Drugi ključni kriterij odabira je dubina memorije uzorka i brzina uzorkovanja. Moderni DSO-ovi osnovnog nivoa sada imaju 1MB ili više uzorka memorije po kanalu. Često se ova memorija uzorka dijeli između kanala i ponekad može biti u potpunosti dostupna samo pri nižim brzinama uzorkovanja. Pri najvećim brzinama uzorkovanja memorija može biti ograničena na nekoliko 10 KB. Svaki moderni DSO sa brzinom uzorkovanja u "realnom vremenu" će imati tipično 5-10 puta veću širinu ulaznog opsega u brzini uzorkovanja. Dakle, DSO od 100 MHz bi imao brzinu uzorkovanja od 500 Ms/s - 1 Gs/s. Znatno povećane stope uzorkovanja su u velikoj mjeri eliminirale prikaz pogrešnih signala koji je ponekad bio prisutan u prvoj generaciji digitalnih doskona. Većina modernih osciloskopa ima jedno ili više eksternih interfejsa ili magistrala kao što su GPIB, Ethernet, serijski port i USB da bi se omogućilo daljinsko upravljanje instrumentom pomoću eksternog softvera. Evo liste različitih tipova osciloskopa:

 

KATODNI OSCILOSKOP

 

DUAL-BEAM OSCILOSKOP

 

ANALOGNI OSCILOSKOP ZA SKLADIŠTE

 

DIGITALNI OSCILOSKOPI

 

OSCILOSKOPI MJEŠOVITOG SIGNALA

 

RUČNI OSCILOSKOPI

 

OSCILOSKOPI BAZANI NA PC-u

LOGIČKI ANALIZATOR je instrument koji hvata i prikazuje više signala iz digitalnog sistema ili digitalnog kola. Logički analizator može pretvoriti uhvaćene podatke u vremenske dijagrame, dekodiranje protokola, tragove državnog stroja, asemblerski jezik. Logički analizatori imaju napredne mogućnosti pokretanja i korisni su kada korisnik treba da vidi vremenske odnose između mnogih signala u digitalnom sistemu. MODULARNI LOGIČKI ANALIZATOR sastoje se od šasije ili glavnog računala i modula logičkog analizatora. Šasija ili mainframe sadrži ekran, kontrole, kontrolni računar i više slotova u koje je instaliran hardver za hvatanje podataka. Svaki modul ima određen broj kanala, a više modula se može kombinovati da bi se dobio veoma veliki broj kanala. Mogućnost kombinovanja više modula za dobijanje velikog broja kanala i generalno veće performanse modularnih logičkih analizatora čini ih skupljim. Za modularne logičke analizatore veoma visoke klase, korisnici će možda morati da obezbede sopstveni računar ili da kupe ugrađeni kontroler kompatibilan sa sistemom. PRENOSIVI LOGIČKI ANALIZATOR integriše sve u jedan paket, sa opcijama instaliranim u fabrici. Oni generalno imaju niže performanse od modularnih, ali su ekonomični metrološki alati za otklanjanje grešaka opšte namene. Kod LOGIČKIH ANALIZATORA ZASNOVANIM NA PC-u, hardver se povezuje sa računarom preko USB ili Ethernet veze i prenosi uhvaćene signale softveru na računaru. Ovi uređaji su generalno mnogo manji i jeftiniji jer koriste postojeću tastaturu, ekran i CPU personalnog računara. Logički analizatori se mogu pokrenuti na komplikovanom nizu digitalnih događaja, a zatim uhvatiti velike količine digitalnih podataka iz sistema koji se testiraju. Danas su u upotrebi specijalizovani konektori. Evolucija sondi logičkih analizatora dovela je do zajedničkog otiska koji podržava više proizvođača, što pruža dodatnu slobodu krajnjim korisnicima: tehnologija bez konektora koja se nudi kao nekoliko trgovačkih naziva specifičnih za dobavljače, kao što je Compression Probing; Meki dodir; D-Max se koristi. Ove sonde pružaju izdržljivu, pouzdanu mehaničku i električnu vezu između sonde i ploče.

ANALIZATOR SPEKTRA mjeri veličinu ulaznog signala u odnosu na frekvenciju unutar punog frekventnog opsega instrumenta. Primarna upotreba je mjerenje snage spektra signala. Postoje i optički i akustički analizatori spektra, ali ovdje ćemo govoriti samo o elektronskim analizatorima koji mjere i analiziraju električne ulazne signale. Spektri dobijeni iz električnih signala nam pružaju informacije o frekvenciji, snazi, harmonicima, propusnosti… itd. Frekvencija je prikazana na horizontalnoj osi, a amplituda signala na vertikalnoj. Analizatori spektra se široko koriste u elektronskoj industriji za analizu frekvencijskog spektra radio frekvencija, RF i audio signala. Gledajući spektar signala možemo otkriti elemente signala i performanse kola koje ih proizvodi. Analizatori spektra mogu napraviti veliki izbor mjerenja. Gledajući metode koje se koriste za dobivanje spektra signala možemo kategorizirati tipove analizatora spektra.

 

- SWEPT-TUNED ANALIZER SPEKTRA koristi superheterodinski prijemnik za pretvorbu dijela spektra ulaznog signala (pomoću naponsko kontroliranog oscilatora i miksera) u središnju frekvenciju propusnog filtera. Sa superheterodinskom arhitekturom, naponski kontrolirani oscilator se provlači kroz raspon frekvencija, koristeći prednosti cijelog frekventnog opsega instrumenta. Swept-tuned analizatori spektra potiču od radio prijemnika. Stoga su swept-tuned analizatori ili analizatori sa podešenim filterom (analogno TRF radiju) ili superheterodinski analizatori. U stvari, u njihovom najjednostavnijem obliku, možete zamisliti analizator spektra sa swept-u kao frekventno selektivni voltmetar sa frekvencijskim opsegom koji se podešava (swept) automatski. To je u suštini frekventno selektivan voltmetar koji reaguje na vršne vrednosti kalibriran da prikaže efektivnu vrednost sinusnog talasa. Analizator spektra može pokazati pojedinačne frekvencijske komponente koje čine složeni signal. Međutim, ne pruža informacije o fazi, već samo informacije o veličini. Moderni podešeni analizatori (posebno superheterodinski analizatori) su precizni uređaji koji mogu izvršiti širok spektar mjerenja. Međutim, oni se prvenstveno koriste za mjerenje stabilnih ili ponavljajućih signala jer ne mogu procijeniti sve frekvencije u datom rasponu istovremeno. Mogućnost simultane procjene svih frekvencija moguća je samo sa analizatorima u realnom vremenu.

 

- ANALIZATORI SPEKTRA U REALNOM VREMENU: FFT ANALIZATOR SPEKTRA izračunava diskretnu Fourierovu transformaciju (DFT), matematički proces koji transformiše talasni oblik u komponente njegovog frekventnog spektra, ulaznog signala. Fourier ili FFT analizator spektra je još jedna implementacija analizatora spektra u realnom vremenu. Fourierov analizator koristi digitalnu obradu signala da uzorkuje ulazni signal i konvertuje ga u frekvencijski domen. Ova konverzija se vrši pomoću brze Fourierove transformacije (FFT). FFT je implementacija diskretne Fourierove transformacije, matematičkog algoritma koji se koristi za transformaciju podataka iz vremenskog u frekvencijski domen. Druga vrsta analizatora spektra u realnom vremenu, odnosno ANALIZATORI PARALELNIH FILTERA kombinuju nekoliko propusnih filtera, svaki sa različitom frekvencijom propusnog opsega. Svaki filter ostaje stalno povezan na ulaz. Nakon početnog vremena postavljanja, analizator sa paralelnim filterom može trenutno detektovati i prikazati sve signale unutar opsega mjerenja analizatora. Stoga, analizator paralelnog filtera pruža analizu signala u realnom vremenu. Analizator sa paralelnim filterom je brz, meri prolazne i vremenski promenljive signale. Međutim, rezolucija frekvencije analizatora sa paralelnim filterom je mnogo niža od većine analizatora sa podešavanjem swept-a, jer je rezolucija određena širinom propusnih filtera. Da biste dobili finu rezoluciju u velikom frekventnom opsegu, trebalo bi vam mnogo mnogo pojedinačnih filtera, što ga čini skupim i složenim. Zbog toga je većina analizatora sa paralelnim filterima, osim onih najjednostavnijih na tržištu, skupa.

 

- ANALIZA VEKTORSKOG SIGNALA (VSA) : U prošlosti, swept-tuned i superheterodinski analizatori spektra pokrivali su široke frekventne opsege od audio, preko mikrotalasne, do milimetarskih frekvencija. Osim toga, analizatori s intenzivnom brzom Fourierovom transformacijom (FFT) digitalne obrade signala (DSP) dali su analizu spektra i mreže visoke rezolucije, ali su bili ograničeni na niske frekvencije zbog ograničenja analogno-digitalne konverzije i tehnologije obrade signala. Današnji signali širokog propusnog opsega, vektorski modulirani, vremenski promjenjivi signali imaju velike koristi od mogućnosti FFT analize i drugih DSP tehnika. Vektorski analizatori signala kombinuju superheterodinsku tehnologiju sa brzim ADC-ima i drugim DSP tehnologijama kako bi ponudili brza merenja spektra visoke rezolucije, demodulaciju i naprednu analizu vremenskog domena. VSA je posebno koristan za karakterizaciju složenih signala kao što su burst, prolazni ili modulirani signali koji se koriste u komunikacijskim, video, emitiranim, sonarnim i ultrazvučnim aplikacijama.

 

Prema faktorima forme, analizatori spektra su grupisani kao stoni, prenosivi, ručni i umreženi. Benchtop modeli su korisni za aplikacije u kojima se analizator spektra može priključiti na napajanje izmjeničnom strujom, kao što je u laboratorijskom okruženju ili proizvodnom području. Stolni analizatori spektra općenito nude bolje performanse i specifikacije od prijenosnih ili ručnih verzija. Međutim, generalno su teži i imaju nekoliko ventilatora za hlađenje. Neki STUPNI ANALIZATORI SPEKTRA nude opcione baterije, što im omogućava da se koriste daleko od mrežne utičnice. Oni se nazivaju PRENOSNIM ANALIZATORIMA SPEKTRA. Prijenosni modeli su korisni za primjene gdje analizator spektra treba iznijeti van radi mjerenja ili ga nositi dok je u upotrebi. Očekuje se da će dobar prenosivi analizator spektra ponuditi opcioni rad na baterije kako bi omogućio korisniku da radi na mjestima bez utičnica, jasno vidljiv displej koji će omogućiti očitavanje sa ekrana na jakoj sunčevoj svjetlosti, mraku ili prašnjavim uvjetima, malu težinu. RUČNI ANALIZATORI SPEKTRA korisni su za aplikacije u kojima analizator spektra mora biti vrlo lagan i mali. Ručni analizatori nude ograničenu sposobnost u poređenju sa većim sistemima. Prednosti ručnih analizatora spektra su međutim njihova vrlo niska potrošnja energije, rad na baterije dok je na terenu kako bi se omogućilo korisniku da se slobodno kreće van, vrlo mala veličina i mala težina. Konačno, MREŽNI ANALIZATORI SPEKTRA ne uključuju ekran i dizajnirani su da omoguće novu klasu geografski distribuiranih aplikacija za praćenje i analizu spektra. Ključni atribut je mogućnost povezivanja analizatora na mrežu i praćenja takvih uređaja preko mreže. Iako mnogi analizatori spektra imaju Ethernet port za kontrolu, obično im nedostaju efikasni mehanizmi za prenos podataka i previše su glomazni i/ili skupi da bi se primenili na tako distribuiran način. Distribuirana priroda takvih uređaja omogućava geolociranje predajnika, praćenje spektra za dinamički pristup spektru i mnoge druge slične aplikacije. Ovi uređaji mogu sinkronizirati hvatanje podataka kroz mrežu analizatora i omogućiti prijenos podataka koji je efikasan u mreži uz niske troškove.

ANALIZATOR PROTOKOLA je alat koji uključuje hardver i/ili softver koji se koristi za hvatanje i analizu signala i prometa podataka preko komunikacijskog kanala. Analizatori protokola se uglavnom koriste za mjerenje performansi i rješavanje problema. Oni se povezuju na mrežu kako bi izračunali ključne pokazatelje učinka kako bi nadgledali mrežu i ubrzali aktivnosti rješavanja problema. ANALIZATOR MREŽNIH PROTOKOLA je vitalni dio alata mrežnog administratora. Analiza mrežnog protokola se koristi za praćenje zdravlja mrežnih komunikacija. Kako bi otkrili zašto mrežni uređaj funkcionira na određeni način, administratori koriste analizator protokola da pronjuše promet i otkriju podatke i protokole koji prolaze duž žice. Analizatori mrežnih protokola su navikli

 

- Rješavanje problema koje je teško riješiti

 

- Otkrijte i identificirajte zlonamjerni softver / zlonamjerni softver. Radite sa sistemom za otkrivanje upada ili honeypotom.

 

- Prikupite informacije, kao što su osnovni obrasci saobraćaja i metrika korišćenja mreže

 

- Identifikujte nekorištene protokole kako biste ih mogli ukloniti iz mreže

 

- Generirajte promet za testiranje penetracije

 

- Prisluškivanje saobraćaja (npr. lociranje neovlaštenog prometa trenutnih poruka ili bežičnih pristupnih tačaka)

REFLEKTOMETAR VREMENSKOG DOMA (TDR) je instrument koji koristi reflektometriju vremenske domene za karakterizaciju i lociranje kvarova u metalnim kablovima kao što su žice sa upredenim paricama i koaksijalni kablovi, konektori, štampane ploče,….itd. Reflektometri u vremenskoj domeni mjere refleksije duž provodnika. Da bi ih izmjerio, TDR prenosi signal incidenta na provodnik i gleda njegove refleksije. Ako je provodnik ujednačene impedanse i pravilno je prekinut, tada neće biti refleksije i preostali upadni signal će biti apsorbovan na drugom kraju terminacijom. Međutim, ako negdje postoji varijacija impedanse, tada će se dio incidentnog signala reflektirati natrag do izvora. Refleksije će imati isti oblik kao upadni signal, ali njihov predznak i veličina zavise od promjene nivoa impedanse. Ako dođe do koraka povećanja impedanse, tada će odraz imati isti predznak kao i upadni signal, a ako dođe do koraka smanjenja impedanse, refleksija će imati suprotan predznak. Refleksije se mjere na izlazu/ulazu reflektometra u vremenskoj domeni i prikazuju kao funkcija vremena. Alternativno, ekran može prikazati prijenos i refleksiju kao funkciju dužine kabela jer je brzina širenja signala gotovo konstantna za dati medij za prijenos. TDR-ovi se mogu koristiti za analizu impedancija i dužina kablova, gubitaka i lokacija konektora i spojeva. TDR mjerenja impedanse pružaju dizajnerima priliku da izvrše analizu integriteta signala sistemskih interkonekcija i precizno predvide performanse digitalnog sistema. TDR mjerenja se široko koriste u radu na karakterizaciji ploča. Dizajner ploča može odrediti karakteristične impedanse tragova ploče, izračunati precizne modele za komponente ploče i preciznije predvidjeti performanse ploče. Postoje mnoga druga područja primjene reflektometara u vremenskom domenu.

SEMICONDUCTOR CURVE TRACER je testna oprema koja se koristi za analizu karakteristika diskretnih poluvodičkih uređaja kao što su diode, tranzistori i tiristori. Instrument je baziran na osciloskopu, ali sadrži i izvore napona i struje koji se mogu koristiti za stimulaciju uređaja koji se testira. Swept napon se primjenjuje na dva terminala uređaja koji se testira, a mjeri se količina struje koju uređaj dozvoljava da teče pri svakom naponu. Na ekranu osciloskopa prikazuje se grafik pod nazivom VI (napon naspram struje). Konfiguracija uključuje maksimalni primijenjeni napon, polaritet primijenjenog napona (uključujući automatsku primjenu pozitivnih i negativnih polariteta) i otpor umetnut u seriju sa uređajem. Za dva terminalna uređaja kao što su diode, ovo je dovoljno da u potpunosti karakterizira uređaj. Tragač krivulje može prikazati sve zanimljive parametre kao što su prednji napon diode, obrnuta struja curenja, obrnuti napon proboja,…itd. Uređaji sa tri terminala kao što su tranzistori i FET-ovi takođe koriste vezu sa kontrolnim terminalom uređaja koji se testira, kao što je terminal baze ili kapije. Za tranzistore i druge uređaje zasnovane na struji, struja baze ili drugog upravljačkog terminala je stepenasta. Za tranzistore sa efektom polja (FET) koristi se stepenasti napon umjesto stepenaste struje. Prolaskom napona kroz konfigurisani opseg napona glavnog terminala, za svaki naponski korak kontrolnog signala, grupa VI krivulja se automatski generiše. Ova grupa krivulja čini vrlo lakim određivanje pojačanja tranzistora, ili napona okidača tiristora ili TRIAC-a. Moderni poluprovodnički uređaji za praćenje krivulja nude mnoge atraktivne karakteristike kao što su intuitivni Windows bazirani korisnički interfejsi, IV, CV i generisanje impulsa, i puls IV, biblioteke aplikacija uključene za svaku tehnologiju… itd.

TESTER / INDIKATOR ROTACIJE FAZE: Ovo su kompaktni i robusni instrumenti za ispitivanje za identifikaciju redoslijeda faza na trofaznim sistemima i fazama otvorenih/bez napona. Idealni su za ugradnju rotirajućih mašina, motora i za provjeru izlazne snage generatora. Među aplikacijama su identifikacija ispravnih sekvenci faza, detekcija nedostajućih žičanih faza, određivanje ispravnih veza za rotirajuće mašine, detekcija strujnih kola.

FREKVENCIJSKI BROJAČ je ispitni instrument koji se koristi za mjerenje frekvencije. Brojači frekvencije uglavnom koriste brojač koji akumulira broj događaja koji se dešavaju u određenom vremenskom periodu. Ako je događaj koji se računa u elektronskom obliku, potrebno je jednostavno povezivanje sa instrumentom. Signali veće složenosti će možda trebati određeno kondicioniranje kako bi bili pogodni za brojanje. Većina frekventnih brojača ima neki oblik pojačala, filtera i kola za oblikovanje na ulazu. Digitalna obrada signala, kontrola osjetljivosti i histereza su druge tehnike za poboljšanje performansi. Ostale vrste periodičnih događaja koji po svojoj prirodi nisu elektronički morat će se pretvoriti pomoću pretvarača. RF brojači frekvencije rade na istim principima kao i brojači niže frekvencije. Imaju veći domet prije prelivanja. Za vrlo visoke mikrotalasne frekvencije, mnogi dizajni koriste brzi predskaler da bi frekvenciju signala sveli do tačke u kojoj normalna digitalna kola mogu da rade. Mikrovalni frekventni brojači mogu mjeriti frekvencije do skoro 100 GHz. Iznad ovih visokih frekvencija signal koji se mjeri se kombinuje u mikseru sa signalom lokalnog oscilatora, stvarajući signal na frekvenciji razlike, koja je dovoljno niska za direktno mjerenje. Popularna sučelja na frekventnim mjeračima su RS232, USB, GPIB i Ethernet slični drugim modernim instrumentima. Osim slanja rezultata mjerenja, brojač može obavijestiti korisnika kada se prekorače korisnički definirane granice mjerenja.

Za detalje i drugu sličnu opremu, posjetite našu web stranicu opreme: http://www.sourceindustrialsupply.com

bottom of page