top of page

Testeurs électroniques

Specialized Test Equipment for Product Testing.png
Custom Designed Product Testing Machines

Avec le terme TESTEUR ÉLECTRONIQUE, nous nous référons à un équipement de test qui est principalement utilisé pour tester, inspecter et analyser des composants et systèmes électriques et électroniques. Nous offrons les plus populaires de l'industrie :

ALIMENTATIONS ÉLECTRIQUES ET DISPOSITIFS GÉNÉRATEURS DE SIGNAUX : ALIMENTATION ÉLECTRIQUE, GÉNÉRATEUR DE SIGNAUX, SYNTHÉTISEUR DE FRÉQUENCE, GÉNÉRATEUR DE FONCTIONS, GÉNÉRATEUR DE MODÈLES NUMÉRIQUES, GÉNÉRATEUR D'IMPULSIONS, INJECTEUR DE SIGNAUX

MÈTRES : MULTIMÈTRES NUMÉRIQUES, COMPTEUR LCR, COMPTEUR EMF, COMPTEUR DE CAPACITÉ, INSTRUMENT DE PONT, PINCE COMPTEUR, GAUSSMETRE / TESLAMETRE / MAGNETOMÈTRE, COMPTEUR DE RÉSISTANCE AU SOL

ANALYSEURS : OSCILLOSCOPES, ANALYSEUR LOGIQUE, ANALYSEUR DE SPECTRE, ANALYSEUR DE PROTOCOLES, ANALYSEUR DE SIGNAUX VECTORIELS, RÉFLECTOMÈTRE TEMPOREL, TRACEUR DE COURBE À SEMI-CONDUCTEUR, ANALYSEUR DE RÉSEAU, TESTEUR DE ROTATION DE PHASE, COMPTEUR DE FRÉQUENCE

Pour plus de détails et d'autres équipements similaires, veuillez visiter notre site Web d'équipement : http://www.sourceindustrialsupply.com

Passons brièvement en revue certains de ces équipements utilisés quotidiennement dans l'industrie :

 

Les alimentations électriques que nous fournissons à des fins de métrologie sont des appareils discrets, de paillasse et autonomes. Les ALIMENTATIONS ÉLECTRIQUES RÉGULÉES RÉGLABLES sont parmi les plus populaires, car leurs valeurs de sortie peuvent être ajustées et leur tension ou courant de sortie est maintenu constant même s'il y a des variations de tension d'entrée ou de courant de charge. Les ALIMENTATIONS ISOLEES ont des sorties de puissance qui sont électriquement indépendantes de leurs entrées de puissance. Selon leur méthode de conversion de puissance, il existe des ALIMENTATIONS LINÉAIRES et À DÉCOUPAGE. Les alimentations linéaires traitent la puissance d'entrée directement avec tous leurs composants de conversion de puissance actifs travaillant dans les régions linéaires, tandis que les alimentations à découpage ont des composants fonctionnant principalement dans des modes non linéaires (tels que des transistors) et convertissent la puissance en impulsions CA ou CC avant En traitement. Les alimentations à découpage sont généralement plus efficaces que les alimentations linéaires car elles perdent moins de puissance en raison des temps plus courts que leurs composants passent dans les régions de fonctionnement linéaires. Selon l'application, une alimentation CC ou CA est utilisée. D'autres appareils populaires sont les ALIMENTATIONS ÉLECTRIQUES PROGRAMMABLES, où la tension, le courant ou la fréquence peuvent être contrôlés à distance via une entrée analogique ou une interface numérique telle que RS232 ou GPIB. Beaucoup d'entre eux ont un micro-ordinateur intégré pour surveiller et contrôler les opérations. Ces instruments sont essentiels à des fins de test automatisé. Certaines alimentations électroniques utilisent une limitation de courant au lieu de couper l'alimentation en cas de surcharge. La limitation électronique est couramment utilisée sur les instruments de type banc de laboratoire. Les GÉNÉRATEURS DE SIGNAUX sont d'autres instruments largement utilisés dans les laboratoires et l'industrie, générant des signaux analogiques ou numériques répétitifs ou non répétitifs. Alternativement, ils sont également appelés GÉNÉRATEURS DE FONCTIONS, GÉNÉRATEURS DE MODÈLES NUMÉRIQUES ou GÉNÉRATEURS DE FRÉQUENCES. Les générateurs de fonctions génèrent des formes d'onde répétitives simples telles que des ondes sinusoïdales, des impulsions de pas, des formes d'onde carrées et triangulaires et arbitraires. Avec les générateurs de formes d'onde arbitraires, l'utilisateur peut générer des formes d'onde arbitraires, dans les limites publiées de la plage de fréquences, de la précision et du niveau de sortie. Contrairement aux générateurs de fonctions, qui sont limités à un simple ensemble de formes d'onde, un générateur de formes d'onde arbitraires permet à l'utilisateur de spécifier une forme d'onde source de différentes manières. Les GÉNÉRATEURS DE SIGNAUX RF et MICRO-ONDES sont utilisés pour tester les composants, les récepteurs et les systèmes dans des applications telles que les communications cellulaires, le WiFi, le GPS, la diffusion, les communications par satellite et les radars. Les générateurs de signaux RF fonctionnent généralement entre quelques kHz et 6 GHz, tandis que les générateurs de signaux micro-ondes fonctionnent dans une gamme de fréquences beaucoup plus large, de moins de 1 MHz à au moins 20 GHz et même jusqu'à des centaines de gammes de GHz en utilisant un matériel spécial. Les générateurs de signaux RF et micro-ondes peuvent être classés en tant que générateurs de signaux analogiques ou vectoriels. LES GÉNÉRATEURS DE SIGNAUX À FRÉQUENCE AUDIO génèrent des signaux dans la gamme des fréquences audio et au-dessus. Ils ont des applications de laboratoire électronique vérifiant la réponse en fréquence des équipements audio. Les GÉNÉRATEURS DE SIGNAUX VECTORIELS, parfois également appelés GÉNÉRATEURS DE SIGNAUX NUMÉRIQUES, sont capables de générer des signaux radio modulés numériquement. Les générateurs de signaux vectoriels peuvent générer des signaux basés sur des normes industrielles telles que GSM, W-CDMA (UMTS) et Wi-Fi (IEEE 802.11). LES GÉNÉRATEURS DE SIGNAUX LOGIQUES sont également appelés GÉNÉRATEURS DE MODÈLES NUMÉRIQUES. Ces générateurs produisent des signaux de types logiques, c'est-à-dire des 1 et des 0 logiques sous la forme de niveaux de tension classiques. Les générateurs de signaux logiques sont utilisés comme sources de stimulus pour la validation fonctionnelle et les tests de circuits intégrés numériques et de systèmes embarqués. Les appareils mentionnés ci-dessus sont à usage général. Il existe cependant de nombreux autres générateurs de signaux conçus pour des applications spécifiques personnalisées. Un INJECTEUR DE SIGNAL est un outil de dépannage très utile et rapide pour le traçage du signal dans un circuit. Les techniciens peuvent déterminer très rapidement l'étage défaillant d'un appareil tel qu'un récepteur radio. L'injecteur de signal peut être appliqué à la sortie du haut-parleur, et si le signal est audible, on peut passer à l'étage précédent du circuit. Dans ce cas un amplificateur audio, et si le signal injecté se fait à nouveau entendre on peut faire monter l'injection du signal dans les étages du circuit jusqu'à ce que le signal ne soit plus audible. Cela servira à localiser l'emplacement du problème.

Un MULTIMÈTRE est un instrument de mesure électronique combinant plusieurs fonctions de mesure dans un seul appareil. Généralement, les multimètres mesurent la tension, le courant et la résistance. Des versions numériques et analogiques sont disponibles. Nous proposons des multimètres portables ainsi que des modèles de qualité laboratoire avec étalonnage certifié. Les multimètres modernes peuvent mesurer de nombreux paramètres tels que : Tension (à la fois AC / DC), en volts, Courant (à la fois AC / DC), en ampères, Résistance en ohms. De plus, certains multimètres mesurent : la capacité en farads, la conductance en siemens, les décibels, le rapport cyclique en pourcentage, la fréquence en hertz, l'inductance en henry, la température en degrés Celsius ou Fahrenheit, à l'aide d'une sonde de test de température. Certains multimètres incluent également : Testeur de continuité ; sonne lorsqu'un circuit conduit, diodes (mesure de la chute directe des jonctions de diodes), transistors (mesure du gain de courant et d'autres paramètres), fonction de vérification de la batterie, fonction de mesure du niveau de lumière, fonction de mesure de l'acidité et de l'alcalinité (pH) et fonction de mesure de l'humidité relative. Les multimètres modernes sont souvent numériques. Les multimètres numériques modernes ont souvent un ordinateur intégré pour en faire des outils très puissants en métrologie et en test. Ils incluent des fonctionnalités telles que ::

 

• Auto-gaming, qui sélectionne la plage correcte pour la quantité testée afin que les chiffres les plus significatifs soient affichés.

 

• Auto-polarité pour les lectures de courant continu, indique si la tension appliquée est positive ou négative.

 

•Échantillonnage et maintien, qui verrouillera la lecture la plus récente pour examen une fois l'instrument retiré du circuit testé.

 

• Tests à courant limité pour la chute de tension aux jonctions semi-conductrices. Même si elle ne remplace pas un testeur de transistors, cette fonctionnalité des multimètres numériques facilite le test des diodes et des transistors.

 

• Une représentation graphique à barres de la quantité testée pour une meilleure visualisation des changements rapides des valeurs mesurées.

 

•Un oscilloscope à faible bande passante.

 

• Testeurs de circuits automobiles avec tests pour les signaux de temporisation et de temporisation automobiles.

 

•Fonction d'acquisition de données pour enregistrer les lectures maximales et minimales sur une période donnée et pour prélever un certain nombre d'échantillons à intervalles fixes.

 

•Un compteur LCR combiné.

 

Certains multimètres peuvent être interfacés avec des ordinateurs, tandis que d'autres peuvent stocker des mesures et les télécharger sur un ordinateur.

 

Encore un autre outil très utile, un LCR METER est un instrument de métrologie pour mesurer l'inductance (L), la capacité (C) et la résistance (R) d'un composant. L'impédance est mesurée en interne et convertie pour l'affichage en la valeur de capacité ou d'inductance correspondante. Les lectures seront raisonnablement précises si le condensateur ou l'inducteur testé n'a pas de composante résistive d'impédance significative. Les compteurs LCR avancés mesurent l'inductance et la capacité réelles, ainsi que la résistance série équivalente des condensateurs et le facteur Q des composants inductifs. L'appareil testé est soumis à une source de tension alternative et le multimètre mesure la tension aux bornes et le courant traversant l'appareil testé. À partir du rapport de la tension au courant, le compteur peut déterminer l'impédance. L'angle de phase entre la tension et le courant est également mesuré dans certains instruments. En combinaison avec l'impédance, la capacité ou l'inductance équivalente et la résistance de l'appareil testé peuvent être calculées et affichées. Les compteurs LCR ont des fréquences de test sélectionnables de 100 Hz, 120 Hz, 1 kHz, 10 kHz et 100 kHz. Les compteurs LCR de paillasse ont généralement des fréquences de test sélectionnables de plus de 100 kHz. Ils incluent souvent la possibilité de superposer une tension ou un courant continu au signal de mesure alternatif. Alors que certains compteurs offrent la possibilité de fournir ces tensions ou courants continus en externe, d'autres appareils les fournissent en interne.

 

Un EMF METER est un instrument de test et de métrologie pour mesurer les champs électromagnétiques (EMF). La majorité d'entre eux mesurent la densité de flux de rayonnement électromagnétique (champs CC) ou la variation d'un champ électromagnétique dans le temps (champs CA). Il existe des versions d'instruments à un axe et à trois axes. Les compteurs à axe unique coûtent moins cher que les compteurs à trois axes, mais prennent plus de temps pour effectuer un test car le compteur ne mesure qu'une dimension du champ. Les compteurs EMF à axe unique doivent être inclinés et tournés sur les trois axes pour effectuer une mesure. D'autre part, les compteurs tri-axes mesurent les trois axes simultanément, mais sont plus chers. Un compteur EMF peut mesurer les champs électromagnétiques CA, qui émanent de sources telles que le câblage électrique, tandis que les GAUSSMÈTRES / TESLAMÈTRES ou MAGNETOMÈTRES mesurent les champs CC émis par des sources où le courant continu est présent. La majorité des compteurs EMF sont calibrés pour mesurer des champs alternatifs de 50 et 60 Hz correspondant à la fréquence du réseau électrique américain et européen. Il existe d'autres compteurs qui peuvent mesurer des champs alternés à aussi peu que 20 Hz. Les mesures EMF peuvent être à large bande sur une large gamme de fréquences ou surveiller sélectivement les fréquences uniquement sur la gamme de fréquences d'intérêt.

 

Un COMPTEUR DE CAPACITÉ est un équipement de test utilisé pour mesurer la capacité de condensateurs principalement discrets. Certains compteurs affichent uniquement la capacité, tandis que d'autres affichent également les fuites, la résistance série équivalente et l'inductance. Les instruments de test haut de gamme utilisent des techniques telles que l'insertion du condensateur sous test dans un circuit en pont. En faisant varier les valeurs des autres branches du pont de manière à équilibrer le pont, on détermine la valeur du condensateur inconnu. Cette méthode assure une plus grande précision. Le pont peut également être capable de mesurer la résistance et l'inductance en série. Les condensateurs sur une plage allant des picofarads aux farads peuvent être mesurés. Les circuits en pont ne mesurent pas le courant de fuite, mais une tension de polarisation continue peut être appliquée et la fuite mesurée directement. De nombreux INSTRUMENTS DE PONT peuvent être connectés à des ordinateurs et des échanges de données peuvent être effectués pour télécharger des lectures ou pour contrôler le pont de manière externe. De tels instruments de pont offrent également des tests go / no go pour l'automatisation des tests dans un environnement de production et de contrôle qualité au rythme rapide.

 

Pourtant, un autre instrument de test, un CLAMP METER est un testeur électrique combinant un voltmètre avec un ampèremètre de type pince. La plupart des versions modernes des pinces ampèremétriques sont numériques. Les pinces ampèremétriques modernes ont la plupart des fonctions de base d'un multimètre numérique, mais avec la fonctionnalité supplémentaire d'un transformateur de courant intégré au produit. Lorsque vous serrez les "mâchoires" de l'instrument autour d'un conducteur transportant un courant alternatif important, ce courant est couplé à travers les mâchoires, comme le noyau de fer d'un transformateur de puissance, et dans un enroulement secondaire qui est connecté à travers le shunt de l'entrée du compteur , le principe de fonctionnement ressemblant beaucoup à celui d'un transformateur. Un courant beaucoup plus faible est délivré à l'entrée du compteur en raison du rapport entre le nombre d'enroulements secondaires et le nombre d'enroulements primaires enroulés autour du noyau. Le primaire est représenté par le seul conducteur autour duquel les mâchoires sont serrées. Si le secondaire a 1000 enroulements, alors le courant secondaire est 1/1000 du courant circulant dans le primaire, ou dans ce cas le conducteur mesuré. Ainsi, 1 ampère de courant dans le conducteur mesuré produirait 0,001 ampère de courant à l'entrée du compteur. Avec les pinces ampèremétriques, des courants beaucoup plus importants peuvent être facilement mesurés en augmentant le nombre de tours dans l'enroulement secondaire. Comme avec la plupart de nos équipements de test, les pinces ampèremétriques avancées offrent une capacité d'enregistrement. Les TESTEURS DE RÉSISTANCE AU SOL sont utilisés pour tester les électrodes de terre et la résistivité du sol. Les exigences de l'instrument dépendent de la gamme d'applications. Les instruments de test de terre à pince modernes simplifient les tests de boucle de terre et permettent des mesures de courant de fuite non intrusives.

Parmi les ANALYSEURS que nous vendons figurent les OSCILLOSCOPES sans aucun doute l'un des équipements les plus utilisés. Un oscilloscope, également appelé OSCILLOGRAPHE, est un type d'instrument de test électronique qui permet l'observation de tensions de signal variant constamment sous la forme d'un tracé bidimensionnel d'un ou plusieurs signaux en fonction du temps. Les signaux non électriques tels que le son et les vibrations peuvent également être convertis en tensions et affichés sur des oscilloscopes. Les oscilloscopes sont utilisés pour observer l'évolution d'un signal électrique dans le temps, la tension et le temps décrivent une forme qui est représentée graphiquement en continu par rapport à une échelle calibrée. L'observation et l'analyse de la forme d'onde nous révèlent des propriétés telles que l'amplitude, la fréquence, l'intervalle de temps, le temps de montée et la distorsion. Les oscilloscopes peuvent être réglés de manière à ce que les signaux répétitifs puissent être observés sous forme de forme continue sur l'écran. De nombreux oscilloscopes ont une fonction de stockage qui permet de capturer des événements uniques par l'instrument et de les afficher pendant une durée relativement longue. Cela nous permet d'observer des événements trop rapidement pour être directement perceptibles. Les oscilloscopes modernes sont des instruments légers, compacts et portables. Il existe également des instruments miniatures alimentés par batterie pour les applications de service sur le terrain. Les oscilloscopes de laboratoire sont généralement des appareils de table. Il existe une grande variété de sondes et de câbles d'entrée à utiliser avec les oscilloscopes. Veuillez nous contacter si vous avez besoin de conseils sur celui à utiliser dans votre application. Les oscilloscopes à deux entrées verticales sont appelés oscilloscopes à double trace. À l'aide d'un CRT à faisceau unique, ils multiplexent les entrées, commutant généralement entre elles assez rapidement pour afficher deux traces apparemment à la fois. Il existe aussi des oscilloscopes avec plus de traces ; quatre entrées sont communes à celles-ci. Certains oscilloscopes multi-traces utilisent l'entrée de déclenchement externe comme entrée verticale facultative, et certains ont des troisième et quatrième canaux avec seulement des commandes minimales. Les oscilloscopes modernes ont plusieurs entrées pour les tensions et peuvent donc être utilisés pour tracer une tension variable par rapport à une autre. Ceci est utilisé par exemple pour tracer des courbes IV (caractéristiques de courant en fonction de la tension) pour des composants tels que des diodes. Pour les hautes fréquences et avec des signaux numériques rapides, la bande passante des amplificateurs verticaux et le taux d'échantillonnage doivent être suffisamment élevés. Pour une utilisation à usage général, une bande passante d'au moins 100 MHz est généralement suffisante. Une bande passante beaucoup plus faible est suffisante pour les applications audiofréquence uniquement. La plage utile de balayage va d'une seconde à 100 nanosecondes, avec un déclenchement et un retard de balayage appropriés. Un circuit de déclenchement bien conçu et stable est nécessaire pour un affichage stable. La qualité du circuit de déclenchement est essentielle pour de bons oscilloscopes. Un autre critère de sélection clé est la profondeur de la mémoire d'échantillonnage et la fréquence d'échantillonnage. Les DSO modernes de niveau de base ont maintenant 1 Mo ou plus de mémoire d'échantillons par canal. Souvent, cette mémoire d'échantillons est partagée entre les canaux et ne peut parfois être entièrement disponible qu'à des taux d'échantillonnage inférieurs. Aux fréquences d'échantillonnage les plus élevées, la mémoire peut être limitée à quelques dizaines de Ko. Tout DSO moderne à taux d'échantillonnage "en temps réel" aura généralement 5 à 10 fois la bande passante d'entrée en taux d'échantillonnage. Ainsi, un DSO à bande passante de 100 MHz aurait une fréquence d'échantillonnage de 500 Ms/s - 1 Gs/s. Des taux d'échantillonnage considérablement augmentés ont largement éliminé l'affichage de signaux incorrects qui étaient parfois présents dans la première génération d'oscilloscopes numériques. La plupart des oscilloscopes modernes fournissent une ou plusieurs interfaces ou bus externes tels que GPIB, Ethernet, port série et USB pour permettre le contrôle à distance de l'instrument par un logiciel externe. Voici une liste des différents types d'oscilloscope :

 

OSCILLOSCOPE À RAYONS CATHODIQUES

 

OSCILLOSCOPE DOUBLE FAISCEAU

 

OSCILLOSCOPE À MÉMOIRE ANALOGIQUE

 

OSCILLOSCOPES NUMÉRIQUES

 

OSCILLOSCOPES À SIGNAUX MIXTES

 

OSCILLOSCOPES PORTATIFS

 

OSCILLOSCOPES BASÉS SUR PC

Un ANALYSEUR LOGIQUE est un instrument qui capture et affiche plusieurs signaux provenant d'un système numérique ou d'un circuit numérique. Un analyseur logique peut convertir les données capturées en diagrammes temporels, en décodages de protocole, en traces de machine d'état, en langage d'assemblage. Les analyseurs logiques ont des capacités de déclenchement avancées et sont utiles lorsque l'utilisateur a besoin de voir les relations temporelles entre de nombreux signaux dans un système numérique. Les ANALYSEURS LOGIQUES MODULAIRES se composent à la fois d'un châssis ou d'un ordinateur central et de modules d'analyseur logique. Le châssis ou l'unité centrale contient l'affichage, les commandes, l'ordinateur de contrôle et plusieurs emplacements dans lesquels le matériel de capture de données est installé. Chaque module a un nombre spécifique de canaux, et plusieurs modules peuvent être combinés pour obtenir un nombre de canaux très élevé. La possibilité de combiner plusieurs modules pour obtenir un nombre élevé de voies et les performances généralement supérieures des analyseurs logiques modulaires les rendent plus chers. Pour les analyseurs logiques modulaires très haut de gamme, les utilisateurs peuvent avoir besoin de fournir leur propre PC hôte ou d'acheter un contrôleur intégré compatible avec le système. Les ANALYSEURS LOGIQUES PORTABLES intègrent tout dans un seul package, avec des options installées en usine. Ils ont généralement des performances inférieures à celles des modulaires, mais sont des outils de métrologie économiques pour le débogage à usage général. Dans les ANALYSEURS LOGIQUES BASÉS SUR PC, le matériel se connecte à un ordinateur via une connexion USB ou Ethernet et relaie les signaux capturés au logiciel sur l'ordinateur. Ces appareils sont généralement beaucoup plus petits et moins chers car ils utilisent le clavier, l'écran et le processeur existants d'un ordinateur personnel. Les analyseurs logiques peuvent être déclenchés sur une séquence complexe d'événements numériques, puis capturer de grandes quantités de données numériques à partir des systèmes testés. Aujourd'hui, des connecteurs spécialisés sont utilisés. L'évolution des sondes d'analyseurs logiques a conduit à une empreinte commune prise en charge par plusieurs fournisseurs, ce qui offre une liberté supplémentaire aux utilisateurs finaux : technologie sans connecteur proposée sous plusieurs noms commerciaux spécifiques aux fournisseurs tels que Compression Probing ; Doux au toucher; D-Max est utilisé. Ces sondes fournissent une connexion mécanique et électrique durable et fiable entre la sonde et le circuit imprimé.

Un ANALYSEUR DE SPECTRE mesure l'amplitude d'un signal d'entrée par rapport à la fréquence dans toute la gamme de fréquences de l'instrument. L'utilisation principale est de mesurer la puissance du spectre des signaux. Il existe également des analyseurs de spectre optiques et acoustiques, mais nous ne discuterons ici que des analyseurs électroniques qui mesurent et analysent les signaux d'entrée électriques. Les spectres obtenus à partir des signaux électriques nous renseignent sur la fréquence, la puissance, les harmoniques, la bande passante…etc. La fréquence est affichée sur l'axe horizontal et l'amplitude du signal sur la verticale. Les analyseurs de spectre sont largement utilisés dans l'industrie électronique pour les analyses du spectre de fréquence des signaux radiofréquence, RF et audio. En regardant le spectre d'un signal, nous sommes en mesure de révéler des éléments du signal et les performances du circuit qui les produit. Les analyseurs de spectre sont capables d'effectuer une grande variété de mesures. En regardant les méthodes utilisées pour obtenir le spectre d'un signal, nous pouvons classer les types d'analyseurs de spectre.

 

- UN ANALYSEUR DE SPECTRE SWEPT-TUNED utilise un récepteur superhétérodyne pour abaisser une partie du spectre du signal d'entrée (à l'aide d'un oscillateur commandé en tension et d'un mélangeur) à la fréquence centrale d'un filtre passe-bande. Avec une architecture superhétérodyne, l'oscillateur commandé en tension balaye une gamme de fréquences, tirant parti de toute la gamme de fréquences de l'instrument. Les analyseurs de spectre à balayage sont issus des récepteurs radio. Par conséquent, les analyseurs accordés par balayage sont soit des analyseurs à filtre accordé (analogues à une radio TRF), soit des analyseurs superhétérodynes. En fait, dans leur forme la plus simple, vous pouvez considérer un analyseur de spectre à balayage comme un voltmètre sélectif en fréquence avec une plage de fréquences qui est réglée (balayée) automatiquement. Il s'agit essentiellement d'un voltmètre sélectif en fréquence, à réponse de crête, calibré pour afficher la valeur efficace d'une onde sinusoïdale. L'analyseur de spectre peut afficher les composantes de fréquence individuelles qui composent un signal complexe. Cependant, il ne fournit pas d'informations de phase, uniquement des informations de magnitude. Les analyseurs modernes à réglage par balayage (analyseurs superhétérodynes, en particulier) sont des appareils de précision qui peuvent effectuer une grande variété de mesures. Cependant, ils sont principalement utilisés pour mesurer des signaux stables ou répétitifs, car ils ne peuvent pas évaluer simultanément toutes les fréquences d'une plage donnée. La capacité d'évaluer toutes les fréquences simultanément est possible uniquement avec les analyseurs en temps réel.

 

- ANALYSEURS DE SPECTRE EN TEMPS RÉEL : UN ANALYSEUR DE SPECTRE FFT calcule la transformée de Fourier discrète (DFT), un processus mathématique qui transforme une forme d'onde en composantes de son spectre de fréquence, du signal d'entrée. L'analyseur de spectre Fourier ou FFT est une autre implémentation d'analyseur de spectre en temps réel. L'analyseur de Fourier utilise le traitement numérique du signal pour échantillonner le signal d'entrée et le convertir dans le domaine fréquentiel. Cette conversion est effectuée à l'aide de la transformée de Fourier rapide (FFT). La FFT est une implémentation de la transformée de Fourier discrète, l'algorithme mathématique utilisé pour transformer les données du domaine temporel au domaine fréquentiel. Un autre type d'analyseurs de spectre en temps réel, à savoir les ANALYSEURS DE FILTRES PARALLÈLES combinent plusieurs filtres passe-bande, chacun avec une fréquence passe-bande différente. Chaque filtre reste connecté à l'entrée à tout moment. Après un temps de stabilisation initial, l'analyseur à filtre parallèle peut instantanément détecter et afficher tous les signaux dans la plage de mesure de l'analyseur. Par conséquent, l'analyseur à filtre parallèle fournit une analyse de signal en temps réel. L'analyseur à filtre parallèle est rapide, il mesure les signaux transitoires et variant dans le temps. Cependant, la résolution en fréquence d'un analyseur à filtre parallèle est bien inférieure à celle de la plupart des analyseurs à balayage, car la résolution est déterminée par la largeur des filtres passe-bande. Pour obtenir une résolution fine sur une large gamme de fréquences, vous auriez besoin de nombreux filtres individuels, ce qui le rend coûteux et complexe. C'est pourquoi la plupart des analyseurs à filtres parallèles, à l'exception des plus simples du marché, sont chers.

 

- ANALYSE DU SIGNAL VECTORIEL (VSA) : Dans le passé, les analyseurs de spectre à balayage et superhétérodynes couvraient de larges gammes de fréquences allant de l'audio, aux micro-ondes, aux fréquences millimétriques. De plus, les analyseurs de transformation de Fourier rapide (FFT) intensifs de traitement du signal numérique (DSP) fournissaient une analyse de spectre et de réseau haute résolution, mais étaient limités aux basses fréquences en raison des limites des technologies de conversion analogique-numérique et de traitement du signal. Les signaux actuels à large bande passante, à modulation vectorielle et variables dans le temps bénéficient grandement des capacités d'analyse FFT et d'autres techniques DSP. Les analyseurs de signaux vectoriels combinent la technologie superhétérodyne avec des ADC à grande vitesse et d'autres technologies DSP pour offrir des mesures de spectre haute résolution rapides, une démodulation et une analyse avancée dans le domaine temporel. Le VSA est particulièrement utile pour caractériser des signaux complexes tels que des signaux en rafale, transitoires ou modulés utilisés dans les communications, la vidéo, la diffusion, les sonars et les applications d'imagerie par ultrasons.

 

Selon les facteurs de forme, les analyseurs de spectre sont regroupés en appareils de table, portables, portables et en réseau. Les modèles de paillasse sont utiles pour les applications où l'analyseur de spectre peut être branché sur l'alimentation secteur, comme dans un environnement de laboratoire ou une zone de fabrication. Les analyseurs de spectre de paillasse offrent généralement de meilleures performances et spécifications que les versions portables ou portables. Cependant, ils sont généralement plus lourds et disposent de plusieurs ventilateurs pour le refroidissement. Certains ANALYSEURS DE SPECTRE DE PAILLASSE offrent des blocs-piles en option, leur permettant d'être utilisés loin d'une prise secteur. Ceux-ci sont appelés ANALYSEURS DE SPECTRE PORTABLES. Les modèles portables sont utiles pour les applications où l'analyseur de spectre doit être emmené à l'extérieur pour effectuer des mesures ou transporté pendant son utilisation. Un bon analyseur de spectre portable devrait offrir un fonctionnement optionnel alimenté par batterie pour permettre à l'utilisateur de travailler dans des endroits sans prises de courant, un affichage clairement visible pour permettre à l'écran d'être lu en plein soleil, dans l'obscurité ou dans des conditions poussiéreuses, léger. Les ANALYSEURS DE SPECTRE PORTABLES sont utiles pour les applications où l'analyseur de spectre doit être très léger et petit. Les analyseurs portables offrent une capacité limitée par rapport aux systèmes plus grands. Les avantages des analyseurs de spectre portables sont cependant leur très faible consommation d'énergie, leur fonctionnement sur batterie sur le terrain pour permettre à l'utilisateur de se déplacer librement à l'extérieur, leur très petite taille et leur poids léger. Enfin, les ANALYSEURS DE SPECTRE EN RÉSEAU n'incluent pas d'affichage et ils sont conçus pour permettre une nouvelle classe d'applications de surveillance et d'analyse du spectre réparties géographiquement. L'attribut clé est la possibilité de connecter l'analyseur à un réseau et de surveiller ces appareils sur un réseau. Alors que de nombreux analyseurs de spectre ont un port Ethernet pour le contrôle, ils manquent généralement de mécanismes de transfert de données efficaces et sont trop volumineux et/ou coûteux pour être déployés de manière aussi distribuée. La nature distribuée de ces dispositifs permet la géolocalisation des émetteurs, la surveillance du spectre pour un accès dynamique au spectre et de nombreuses autres applications similaires. Ces appareils sont capables de synchroniser les captures de données sur un réseau d'analyseurs et permettent un transfert de données efficace sur le réseau pour un faible coût.

Un ANALYSEUR DE PROTOCOLE est un outil incorporant du matériel et/ou un logiciel utilisé pour capturer et analyser les signaux et le trafic de données sur un canal de communication. Les analyseurs de protocole sont principalement utilisés pour mesurer les performances et le dépannage. Ils se connectent au réseau pour calculer des indicateurs de performance clés afin de surveiller le réseau et d'accélérer les activités de dépannage. UN ANALYSEUR DE PROTOCOLE RÉSEAU est un élément essentiel de la boîte à outils d'un administrateur réseau. L'analyse de protocole réseau est utilisée pour surveiller la santé des communications réseau. Pour savoir pourquoi un périphérique réseau fonctionne d'une certaine manière, les administrateurs utilisent un analyseur de protocole pour renifler le trafic et exposer les données et les protocoles qui transitent le long du câble. Les analyseurs de protocole réseau sont utilisés pour

 

- Résoudre les problèmes difficiles à résoudre

 

- Détecter et identifier les logiciels malveillants / malware. Travaillez avec un système de détection d'intrusion ou un pot de miel.

 

- Recueillir des informations, telles que les modèles de trafic de base et les mesures d'utilisation du réseau

 

- Identifiez les protocoles inutilisés afin de pouvoir les supprimer du réseau

 

- Générer du trafic pour les tests d'intrusion

 

- Écouter le trafic (par exemple, localiser le trafic de messagerie instantanée non autorisé ou les points d'accès sans fil)

Un RÉFLECTOMÈTRE DANS LE DOMAINE TEMPOREL (TDR) est un instrument qui utilise la réflectométrie dans le domaine temporel pour caractériser et localiser les défauts dans les câbles métalliques tels que les câbles à paires torsadées et les câbles coaxiaux, les connecteurs, les cartes de circuits imprimés, etc. Les réflectomètres dans le domaine temporel mesurent les réflexions le long d'un conducteur. Pour les mesurer, le TDR transmet un signal incident sur le conducteur et regarde ses réflexions. Si le conducteur a une impédance uniforme et est correctement terminé, il n'y aura pas de réflexions et le signal incident restant sera absorbé à l'extrémité éloignée par la terminaison. Cependant, s'il y a une variation d'impédance quelque part, une partie du signal incident sera réfléchie vers la source. Les réflexions auront la même forme que le signal incident, mais leur signe et leur amplitude dépendent du changement de niveau d'impédance. S'il y a une augmentation progressive de l'impédance, alors la réflexion aura le même signe que le signal incident et s'il y a une diminution progressive de l'impédance, la réflexion aura le signe opposé. Les réflexions sont mesurées à la sortie/entrée du réflectomètre temporel et affichées en fonction du temps. Alternativement, l'affichage peut afficher la transmission et les réflexions en fonction de la longueur du câble car la vitesse de propagation du signal est presque constante pour un support de transmission donné. Les TDR peuvent être utilisés pour analyser les impédances et les longueurs des câbles, les pertes et les emplacements des connecteurs et des épissures. Les mesures d'impédance TDR offrent aux concepteurs la possibilité d'effectuer une analyse de l'intégrité du signal des interconnexions du système et de prédire avec précision les performances du système numérique. Les mesures TDR sont largement utilisées dans les travaux de caractérisation des cartes. Un concepteur de carte de circuit imprimé peut déterminer les impédances caractéristiques des traces de carte, calculer des modèles précis pour les composants de la carte et prédire les performances de la carte avec plus de précision. Il existe de nombreux autres domaines d'application pour les réflectomètres dans le domaine temporel.

Un TRACEUR DE COURBE SEMI-CONDUCTEUR est un équipement de test utilisé pour analyser les caractéristiques des dispositifs semi-conducteurs discrets tels que les diodes, les transistors et les thyristors. L'instrument est basé sur un oscilloscope, mais contient également des sources de tension et de courant qui peuvent être utilisées pour stimuler l'appareil testé. Une tension balayée est appliquée à deux bornes de l'appareil testé, et la quantité de courant que l'appareil permet de circuler à chaque tension est mesurée. Un graphique appelé VI (tension versus courant) s'affiche sur l'écran de l'oscilloscope. La configuration comprend la tension maximale appliquée, la polarité de la tension appliquée (y compris l'application automatique des polarités positive et négative) et la résistance insérée en série avec l'appareil. Pour les dispositifs à deux bornes comme les diodes, cela suffit pour caractériser complètement le dispositif. Le traceur de courbe peut afficher tous les paramètres intéressants tels que la tension directe de la diode, le courant de fuite inverse, la tension de claquage inverse, etc. Les dispositifs à trois bornes tels que les transistors et les FET utilisent également une connexion à la borne de commande de l'appareil testé, telle que la borne de base ou de porte. Pour les transistors et autres dispositifs basés sur le courant, le courant de base ou autre borne de commande est échelonné. Pour les transistors à effet de champ (FET), une tension échelonnée est utilisée à la place d'un courant échelonné. En balayant la tension à travers la plage configurée des tensions aux bornes principales, pour chaque pas de tension du signal de commande, un groupe de courbes VI est généré automatiquement. Cet ensemble de courbes permet de déterminer très facilement le gain d'un transistor, ou la tension de déclenchement d'un thyristor ou d'un TRIAC. Les traceurs de courbes à semi-conducteurs modernes offrent de nombreuses fonctionnalités attrayantes telles que des interfaces utilisateur intuitives basées sur Windows, IV, CV et génération d'impulsions, et pulse IV, bibliothèques d'applications incluses pour chaque technologie… etc.

TESTEUR/INDICATEUR DE ROTATION DE PHASE : Ce sont des instruments de test compacts et robustes pour identifier la séquence de phase sur les systèmes triphasés et les phases ouvertes/hors tension. Ils sont idéaux pour installer des machines tournantes, des moteurs et pour vérifier la puissance des générateurs. Parmi les applications figurent l'identification des séquences de phases appropriées, la détection des phases de fil manquantes, la détermination des connexions appropriées pour les machines tournantes, la détection des circuits sous tension.

Un COMPTEUR DE FRÉQUENCE est un instrument de test utilisé pour mesurer la fréquence. Les compteurs de fréquence utilisent généralement un compteur qui accumule le nombre d'événements se produisant dans une période de temps spécifique. Si l'événement à compter est sous forme électronique, une simple interface avec l'instrument suffit. Les signaux de plus grande complexité peuvent nécessiter un certain conditionnement pour les rendre aptes au comptage. La plupart des compteurs de fréquence ont une forme d'amplificateur, de filtrage et de circuit de mise en forme à l'entrée. Le traitement numérique du signal, le contrôle de la sensibilité et l'hystérésis sont d'autres techniques permettant d'améliorer les performances. D'autres types d'événements périodiques qui ne sont pas intrinsèquement de nature électronique devront être convertis à l'aide de transducteurs. Les compteurs de fréquence RF fonctionnent sur les mêmes principes que les compteurs de fréquence inférieure. Ils ont plus de portée avant le débordement. Pour les fréquences micro-ondes très élevées, de nombreuses conceptions utilisent un prédiviseur à grande vitesse pour ramener la fréquence du signal à un point où les circuits numériques normaux peuvent fonctionner. Les compteurs de fréquence hyperfréquence peuvent mesurer des fréquences jusqu'à près de 100 GHz. Au-dessus de ces hautes fréquences, le signal à mesurer est combiné dans un mélangeur avec le signal d'un oscillateur local, produisant un signal à la fréquence différence, qui est suffisamment basse pour une mesure directe. Les interfaces populaires sur les compteurs de fréquence sont RS232, USB, GPIB et Ethernet similaires à d'autres instruments modernes. En plus d'envoyer les résultats de mesure, un compteur peut avertir l'utilisateur lorsque les limites de mesure définies par l'utilisateur sont dépassées.

Pour plus de détails et d'autres équipements similaires, veuillez visiter notre site Web d'équipement : http://www.sourceindustrialsupply.com

For other similar equipment, please visit our equipment website: http://www.sourceindustrialsupply.com

bottom of page