top of page

Vi sammenføyer, monterer og fester de produserte delene dine og gjør dem om til ferdige eller halvfabrikata ved hjelp av SVEISING, LODNING, LØDING, SINTERING, LIBEBINDING, FESTE, PRESSEMONTERING. Noen av våre mest populære sveiseprosesser er lysbue, oxyfuel gass, motstand, projeksjon, søm, støt, perkusjon, solid state, elektronstråle, laser, termitt, induksjonssveising. Våre populære loddeprosesser er brenner-, induksjons-, ovn- og dip-lodding. Våre loddemetoder er jern, kokeplate, ovn, induksjon, dip, wave, reflow og ultralydlodding. For limbinding bruker vi ofte termoplast og herdeplast, epoksy, fenol, polyuretan, klebelegeringer samt noen andre kjemikalier og tape. Til slutt består festeprosessene våre av spikring, skruing, muttere og bolter, nagling, clinching, pinning, søm og stifting og presspasning.

• SVEISING: Sveising innebærer sammenføyning av materialer ved å smelte arbeidsstykkene og introdusere fyllmaterialer, som også slutter seg til det smeltede sveisebassenget. Når området avkjøles, får vi en sterk fuge. Trykk påføres i noen tilfeller. I motsetning til sveising involverer lodding og lodding bare smelting av et materiale med lavere smeltepunkt mellom arbeidsstykkene, og arbeidsstykker smelter ikke. Vi anbefaler at du klikker her for åLAST NED våre skjematiske illustrasjoner av sveiseprosesser av AGS-TECH Inc.
Dette vil hjelpe deg bedre å forstå informasjonen vi gir deg nedenfor. 
I buesveising bruker vi en strømforsyning og en elektrode for å lage en lysbue som smelter metallene. Sveisepunktet er beskyttet av en beskyttelsesgass eller damp eller annet materiale. Denne prosessen er populær for sveising av bildeler og stålkonstruksjoner. Ved shelled metal arc sveising (SMAW) eller også kjent som stavsveising, bringes en elektrodestav nær grunnmaterialet og en elektrisk lysbue genereres mellom dem. Elektrodestaven smelter og fungerer som fyllmateriale. Elektroden inneholder også fluss som fungerer som et slagglag og avgir damper som fungerer som dekkgassen. Disse beskytter sveiseområdet mot miljøforurensning. Ingen andre fyllstoffer brukes. Ulempene med denne prosessen er dens langsomhet, behovet for å skifte ut elektroder ofte, behovet for å chipe bort restslagg som stammer fra flussmiddel. En rekke metaller som jern, stål, nikkel, aluminium, kobber osv. Kan sveises. Fordelene er dets rimelige verktøy og brukervennlighet. Gassmetallbuesveising (GMAW) også kjent som metall-inert gass (MIG), vi har kontinuerlig mating av et forbrukbart elektrodetrådfyllstoff og en inert eller delvis inert gass som strømmer rundt tråden mot miljøforurensning av sveiseområdet. Stål, aluminium og andre ikke-jernholdige metaller kan sveises. Fordelene med MIG er høye sveisehastigheter og god kvalitet. Ulempene er dets kompliserte utstyr og utfordringer i vindfulle utemiljøer fordi vi må holde beskyttelsesgassen rundt sveiseområdet stabil. En variant av GMAW er lysbuesveising (FCAW) som består av et fint metallrør fylt med flussmaterialer. Noen ganger er fluksen inne i røret tilstrekkelig for beskyttelse mot miljøforurensning. Submerged Arc Welding (SAW) er i stor grad en automatisert prosess, involverer kontinuerlig trådmating og lysbue som slås under et lag med fluksdekke. Produksjonsratene og kvaliteten er høy, sveiseslagg løsner lett, og vi har et røykfritt arbeidsmiljø. Ulempen er at den kun kan brukes til å sveise  parts i visse posisjoner. Ved gass-wolframbuesveising (GTAW) eller wolfram-inert gassveising (TIG) bruker vi en wolframelektrode sammen med et separat fyllstoff og inerte eller nesten inerte gasser. Som vi vet har wolfram et høyt smeltepunkt og det er et meget egnet metall for svært høye temperaturer. Tungsten i TIG blir ikke konsumert i motsetning til de andre metodene som er forklart ovenfor. En langsom men høykvalitets sveiseteknikk som er fordelaktig fremfor andre teknikker ved sveising av tynne materialer. Egnet for mange metaller. Plasmabuesveising er lik, men bruker plasmagass for å lage lysbuen. Buen i plasmabuesveising er relativt mer konsentrert sammenlignet med GTAW og kan brukes til et bredere spekter av metalltykkelser ved mye høyere hastigheter. GTAW og plasmabuesveising kan brukes på mer eller mindre samme materialer.  
OXY-FUEL / OXYFUEL WELDING også kalt oxyacetylen-sveising, oxy-sveising, gassveising utføres ved bruk av gassbrensel og oksygen til sveising. Siden det ikke brukes strøm, er den bærbar og kan brukes der det ikke er strøm. Ved hjelp av en sveisebrenner varmer vi opp delene og fyllmaterialet for å produsere et felles smeltet metallbasseng. Ulike drivstoff kan brukes som acetylen, bensin, hydrogen, propan, butan ... etc. Ved oxy-fuel sveising bruker vi to beholdere, en for drivstoffet og den andre for oksygen. Oksygenet oksiderer drivstoffet (forbrenner det).
MOTSTANDSVEISING: Denne typen sveising drar fordel av joule-oppvarming og varme genereres på stedet der elektrisk strøm tilføres i en viss tid. Høye strømmer føres gjennom metallet. Det dannes bassenger av smeltet metall på dette stedet. Motstandssveisemetoder er populære på grunn av deres effektivitet, lite forurensningspotensial. Ulempene er imidlertid at utstyrskostnadene er relativt betydelige og den iboende begrensningen til relativt tynne arbeidsstykker. PUNTSVEISING er en hovedtype motstandssveising. Her slår vi sammen to eller flere overlappende ark eller arbeidsstykker ved å bruke to kobberelektroder for å klemme arkene sammen og føre en høy strøm gjennom dem. Materialet mellom kobberelektrodene varmes opp og et smeltet basseng genereres på det stedet. Strømmen stoppes deretter og kobberelektrodespissene avkjøler sveisestedet fordi elektrodene er vannkjølte. Å påføre riktig mengde varme på riktig materiale og tykkelse er nøkkelen for denne teknikken, fordi hvis den påføres feil, vil skjøten være svak. Punktsveising har fordelene av å forårsake ingen vesentlig deformasjon av arbeidsstykker, energieffektivitet, enkel automatisering og enestående produksjonshastigheter, og krever ikke fyllstoff. Ulempen er at siden sveising foregår på punkter i stedet for å danne en kontinuerlig søm, kan den totale styrken være relativt lavere sammenlignet med andre sveisemetoder. SØMSVEISING på den annen side produserer sveiser på de falsende overflatene av lignende materialer. Sømmen kan være rumpe eller overlappende ledd. Sømsveising starter i den ene enden og beveger seg gradvis til den andre. Denne metoden bruker også to elektroder fra kobber for å påføre trykk og strøm til sveiseområdet. De skiveformede elektrodene roterer med konstant kontakt langs sømlinjen og lager en kontinuerlig sveis. Også her kjøles elektroder av vann. Sveisene er veldig sterke og pålitelige. Andre metoder er projeksjon, blits og sveiseteknikker.
SVEISING i fast tilstand er litt annerledes enn de tidligere metodene forklart ovenfor. Koalescens finner sted ved temperaturer under smeltetemperaturen til de sammenføyde metallene og uten bruk av metallfyllstoff. Trykk kan brukes i noen prosesser. Ulike metoder er KOEKTRUSJONSSVEISING hvor forskjellige metaller ekstruderes gjennom samme dyse, KALDTRYKKSVEISING hvor vi sammenføyer myke legeringer under deres smeltepunkt, DIFFUSJONSSVEISING en teknikk uten synlige sveiselinjer, EKSPLOSJONSSVEISING for sammenføyning av forskjellige materialer, f.eks. korrosjonsbestandige legeringer stål, ELEKTROMAGNETISK PULSVEISING hvor vi akselererer rør og plater ved elektromagnetiske krefter, SMISVEISING som består i å varme metallene til høye temperaturer og hamre dem sammen, FRIKKSJONSSVEISING hvor det utføres med tilstrekkelig friksjon, FRIKKSJONSVEISING som involverer en roterende ikke- forbruksverktøy som krysser skjøtelinjen, VARMTRYKKSVEISING hvor vi presser metaller sammen ved forhøyede temperaturer under smeltetemperaturen i vakuum eller inerte gasser, VARM ISOSTATISK TRYKKSVEISING en prosess hvor vi påfører trykk ved bruk av inerte gasser inne i et kar, RULLSVEISING der vi sammenføyer ulikt materiale ved å tvinge dem mellom to roterende hjul, ULTRALYDSVEISING hvor tynne metall- eller plastplater sveises ved hjelp av høyfrekvent vibrasjonsenergi.
Våre andre sveiseprosesser er ELEKTRON SVEISING med dyp penetrering og rask prosessering, men som en kostbar metode anser vi den for spesielle tilfeller, ELECTROSLAG Sveising en metode som kun egner seg for tunge tykke plater og arbeidsstykker av stål, INDUKSJONSSVEISING hvor vi bruker elektromagnetisk induksjon og varme opp våre elektrisk ledende eller ferromagnetiske arbeidsstykker, LASERSTRALSVEISING også med dyp penetrering og rask prosessering, men en kostbar metode, LASER HYBRID-SVEISING som kombinerer LBW med GMAW i samme sveisehode og som er i stand til å bygge bro mellom åpninger på 2 mm mellom platene, PERKUSSJONSSVEISING som involverer en elektrisk utladning etterfulgt av smiing av materialene med påført trykk, THERMIT WELDING som involverer eksoterm reaksjon mellom aluminium og jernoksidpulver., ELECTROGAS SWEISING med forbrukselektroder og brukt med kun stål i vertikal posisjon, og til slutt STUD ARRC WELDING for sammenføyning av bolt til base materiale med varme og trykk.

 

Vi anbefaler at du klikker her for åLAST NED våre skjematiske illustrasjoner av lodde-, lodde- og limingsprosesser av AGS-TECH Inc.
Dette vil hjelpe deg bedre å forstå informasjonen vi gir deg nedenfor. 

 

• LØDNING : Vi forbinder to eller flere metaller ved å varme opp fyllmetaller mellom dem over smeltepunktene og bruke kapillærvirkning for å spre seg. Prosessen ligner på lodding, men temperaturene som er involvert for å smelte fyllstoffet er høyere ved lodding. Som ved sveising beskytter fluss fyllmaterialet mot atmosfærisk forurensning. Etter avkjøling settes arbeidsstykkene sammen. Prosessen involverer følgende nøkkeltrinn: God passform og klaring, riktig rengjøring av basismaterialer, riktig feste, riktig valg av fluss og atmosfære, oppvarming av sammenstillingen og til slutt rengjøring av loddet sammenstilling. Noen av våre loddingsprosesser er TORCH BRAZING, en populær metode som utføres manuelt eller på en automatisert måte.  Den er egnet for produksjonsordrer med lavt volum og spesialiserte tilfeller. Varme påføres ved hjelp av gassflammer nær skjøten som loddes. OVNLODDING krever mindre operatørferdigheter og er en halvautomatisk prosess som er egnet for industriell masseproduksjon. Både temperaturkontroll og kontroll av atmosfæren i ovnen er fordeler med denne teknikken, fordi førstnevnte gjør oss i stand til å ha kontrollerte varmesykluser og eliminere lokal oppvarming slik tilfellet er ved brennerlodding, og sistnevnte beskytter delen mot oksidasjon. Ved å bruke jigging er vi i stand til å redusere produksjonskostnadene til et minimum. Ulempene er høyt strømforbruk, utstyrskostnader og mer utfordrende designhensyn. VAKUUMLODNING foregår i en vakuumovn. Temperaturensartethet opprettholdes og vi oppnår flussfrie, meget rene fuger med svært små restspenninger. Varmebehandlinger kan finne sted under vakuumlodding, på grunn av de lave restspenningene som er tilstede under langsomme oppvarmings- og avkjølingssykluser. Den største ulempen er den høye kostnaden fordi opprettelsen av et vakuummiljø er en kostbar prosess. Nok en teknikk DIP-LODNING kobler sammen fastmonterte deler der loddemasse påføres på sammenfallende overflater. Deretter dyppes de  festede delene i et bad med et smeltet salt som natriumklorid (bordsalt) som fungerer som et varmeoverføringsmedium og flussmiddel. Luft er utelukket og derfor skjer det ingen oksiddannelse. I INDUKSJONSLODDING slår vi sammen materialer med et fyllmetall som har et lavere smeltepunkt enn grunnmaterialene. Vekselstrømmen fra induksjonsspolen skaper et elektromagnetisk felt som induserer induksjonsoppvarming på for det meste jernholdige magnetiske materialer. Metoden gir selektiv oppvarming, gode skjøter med fyllstoffer som kun flyter i ønskede områder, lite oksidasjon fordi det ikke er flammer og avkjøling er rask, rask oppvarming, konsistens og egnethet for produksjon av store volum. For å fremskynde prosessene våre og for å sikre konsistens bruker vi ofte preforms. Informasjon om vårt loddeanlegg som produserer keramiske til metallfittings, hermetisk forsegling, vakuumgjennomføringer, høy- og ultrahøyvakuum- og væskekontrollkomponenter  finner du her:_cc781905-1546-5cde_cc781905-91905-5cde_cc781905-916-5cdeLoddefabrikkbrosjyre

 

• LØDING : Ved lodding har vi ikke smelting av arbeidsstykkene, men et tilsatsmetall med lavere smeltepunkt enn sammenføyningsdelene som renner inn i skjøten. Fyllmetallet i lodding smelter ved lavere temperatur enn ved lodding. Vi bruker blyfrie legeringer til lodding og har RoHS-overensstemmelse og for ulike bruksområder og krav har vi ulike og egnede legeringer som sølvlegering. Lodding gir oss skjøter som er gass- og væsketette. I MYKLODDING har fyllmetallet vårt et smeltepunkt under 400 Celsius, mens ved SØLVLODDING og LODNING trenger vi høyere temperaturer. Myk lodding bruker lavere temperaturer, men resulterer ikke i sterke skjøter for krevende bruksområder ved høye temperaturer. Sølvlodding krever derimot høye temperaturer levert av lommelykten og gir oss sterke skjøter egnet for høytemperaturapplikasjoner. Lodding krever de høyeste temperaturene og vanligvis brukes en lommelykt. Siden loddeskjøter er veldig sterke, er de gode kandidater for å reparere tunge jerngjenstander. I våre produksjonslinjer bruker vi både manuell håndlodding så vel som automatiserte loddelinjer.  INDUKSJONSLODDING bruker høyfrekvent vekselstrøm i en kobberspole for å lette induksjonsoppvarming. Strømmer induseres i den loddede delen og som et resultat genereres varme ved den høye motstanden  joint. Denne varmen smelter fyllmetallet. Flux brukes også. Induksjonslodding er en god metode for å lodde sylindere og rør i en kontinuerlig prosess ved å vikle spolene rundt dem. Lodding av noen materialer som grafitt og keramikk er vanskeligere fordi det krever plettering av arbeidsstykkene med et passende metall før lodding. Dette letter grenseflatebinding. Vi lodder slike materialer spesielt for hermetiske emballasjeapplikasjoner. Vi produserer våre trykte kretskort (PCB) i høyt volum for det meste ved hjelp av BØLGELODDING. Kun for små mengder prototyping bruker vi håndlodding med loddebolt. Vi bruker bølgelodding for både gjennomgående hull og overflatemonterte PCB-montasjer (PCBA). Et midlertidig lim holder komponentene festet til kretskortet og sammenstillingen plasseres på en transportør og beveger seg gjennom et utstyr som inneholder smeltet loddemetall. Først flukses PCB og går deretter inn i forvarmingssonen. Det smeltede loddetinn er i en panne og har et mønster av stående bølger på overflaten. Når PCB beveger seg over disse bølgene, kommer disse bølgene i kontakt med bunnen av PCB og fester seg til loddeputene. Loddemetallet forblir kun på pinner og pads og ikke på selve PCB-en. Bølgene i det smeltede loddetinn må kontrolleres godt slik at det ikke blir sprut og bølgetoppene ikke berører og forurenser uønskede områder på platene. I REFLOW SOLDERING bruker vi en klebrig loddepasta for midlertidig å feste de elektroniske komponentene til platene. Deretter settes platene gjennom en reflowovn med temperaturkontroll. Her smelter loddetinn og forbinder komponentene permanent. Vi bruker denne teknikken for både overflatemonteringskomponenter så vel som for gjennomgående hullkomponenter. Riktig temperaturkontroll og justering av ovnstemperaturer er avgjørende for å unngå ødeleggelse av elektroniske komponenter på brettet ved å overopphete dem over deres maksimale temperaturgrenser. I prosessen med reflow-lodding har vi faktisk flere regioner eller stadier hver med en distinkt termisk profil, som forvarmingstrinn, termisk bløtleggingstrinn, reflow og kjøletrinn. Disse forskjellige trinnene er essensielle for en skadefri reflow-lodding av kretskortsammenstillinger (PCBA).  ULTRASONIC LODNING er en annen ofte brukt teknikk med unike egenskaper- Den kan brukes til å lodde glass, keramiske og ikke-metalliske materialer. For eksempel trenger fotovoltaiske paneler som er ikke-metalliske elektroder som kan festes ved hjelp av denne teknikken. Ved ultralydlodding bruker vi en oppvarmet loddespiss som også avgir ultralydvibrasjoner. Disse vibrasjonene produserer kavitasjonsbobler ved grensesnittet mellom substratet og det smeltede loddematerialet. Den implosive energien til kavitasjon modifiserer oksidoverflaten og fjerner smuss og oksider. I løpet av denne tiden dannes det også et legeringslag. Loddemetallet på bindingsoverflaten inneholder oksygen og muliggjør dannelse av en sterk delt binding mellom glasset og loddetinn. DIPLODDING kan betraktes som en enklere versjon av bølgelodding som kun er egnet for småskala produksjon. Første rengjøringsfluks påføres som i andre prosesser. PCB med monterte komponenter dyppes manuelt eller på en halvautomatisk måte i en tank som inneholder smeltet loddemetall. Den smeltede loddetinn fester seg til de eksponerte metallområdene ubeskyttet av loddemasken på brettet. Utstyret er enkelt og rimelig.

 

• LISTERBINDING: Dette er en annen populær teknikk vi ofte bruker, og den involverer liming av overflater ved hjelp av lim, epoksy, plastmidler eller andre kjemikalier. Binding oppnås ved enten å fordampe løsningsmidlet, ved varmeherding, ved UV-lysherding, ved trykkherding eller å vente i en viss tid. Ulike høyytelseslim brukes i våre produksjonslinjer. Med riktig konstruerte påførings- og herdeprosesser kan limbinding resultere i svært lave spenningsbindinger som er sterke og pålitelige. Limbindinger kan være gode beskyttere mot miljøfaktorer som fuktighet, forurensninger, etsende stoffer, vibrasjoner osv. Fordeler med limbinding er: de kan påføres materialer som ellers ville vært vanskelig å lodde, sveise eller lodde. Det kan også være å foretrekke for varmefølsomme materialer som vil bli skadet av sveising eller andre høytemperaturprosesser. Andre fordeler med lim er at de kan påføres på uregelmessig formede overflater og øker monteringsvekten med svært små mengder sammenlignet med andre metoder. Også dimensjonsendringer i deler er svært minimale. Noen lim har indeksmatchende egenskaper og kan brukes mellom optiske komponenter uten å redusere lyset eller den optiske signalstyrken vesentlig. Ulemper på den annen side er lengre herdetider som kan bremse produksjonslinjer, krav til feste, krav til overflatebehandling og vanskeligheter med å demontere når omarbeid er nødvendig. De fleste av våre limbindingsoperasjoner involverer følgende trinn:
-Overflatebehandling: Spesielle rengjøringsprosedyrer som rengjøring av avionisert vann, alkoholrensing, plasma- eller koronarensing er vanlige. Etter rengjøring kan vi påføre vedheftsfremmende midler på overflatene for å sikre best mulig skjøter.
-Delfeste: For både limpåføring og herding designer og bruker vi tilpassede armaturer.
- Limapplikasjon: Vi bruker noen ganger manuelle, og noen ganger avhengig av tilfellet automatiserte systemer som robotikk, servomotorer, lineære aktuatorer for å levere limet til riktig sted, og vi bruker dispensere for å levere det med riktig volum og mengde.
-Herding: Avhengig av limet kan vi bruke enkel tørking og herding samt herding under UV-lys som fungerer som katalysator eller varmeherding i en ovn eller ved bruk av resistive varmeelementer montert på jigger og inventar.

 

Vi anbefaler at du klikker her for åLAST NED våre skjematiske illustrasjoner av festeprosesser av AGS-TECH Inc.
Dette vil hjelpe deg bedre å forstå informasjonen vi gir deg nedenfor. 

 

• FESTINGSPROSESSER: Våre mekaniske sammenføyningsprosesser faller inn i to kategorier: FESTEMIDLER og INTEGRALE SKJØTER. Eksempler på festemidler vi bruker er skruer, pinner, muttere, bolter, nagler. Eksempler på integrerte skjøter vi bruker er snap- og krympepasninger, sømmer, krymper. Ved å bruke en rekke festemetoder sørger vi for at våre mekaniske ledd er sterke og pålitelige for mange års bruk. SKRUER og BOLTER er noen av de mest brukte festene for å holde gjenstander sammen og posisjonere. Våre skruer og bolter oppfyller ASME-standarder. Ulike typer skruer og bolter er utplassert, inkludert sekskantskruer og sekskantbolter, lagskruer og bolter, dobbelskruer, pluggskruer, øyeskruer, speilskruer, metallskruer, finjusteringsskruer, selvborende og selvskruende skruer , settskrue, skruer med innebygde skiver, ... og mer. Vi har ulike skruehodetyper som forsenket, kuppel, rundt, flenshode og ulike skrutrekktyper som spor, phillips, firkant, sekskant. En  RIVET på den annen side er en permanent mekanisk feste som består av et glatt sylindirisk skaft og et hode på den ene siden. Etter innsetting deformeres den andre enden av naglen og diameteren utvides slik at den holder seg på plass. Med andre ord, før installasjon har en nagle ett hode og etter installasjon har den to. Vi installerer ulike typer nagler avhengig av bruksområde, styrke, tilgjengelighet og pris som solide/runde nagler, strukturelle, semi-tubulære, blinde, oscar, drive, flush, friksjonslås, selvgjennomtrengende nagler. Nagler kan foretrekkes i tilfeller hvor varmedeformasjon og endring i materialegenskaper på grunn av sveisevarme må unngås. Nagler gir også lett vekt og spesielt god styrke og utholdenhet mot skjærkrefter. Mot strekkbelastninger kan imidlertid skruer, muttere og bolter være mer egnet. I CLINCHING-prosessen bruker vi spesielle stanser og dyser for å danne en mekanisk låsing mellom metallplater som sammenføyes. Stansen skyver lagene av metallplate inn i dysehulrommet og resulterer i dannelsen av en permanent skjøt. Ingen oppvarming og ingen kjøling er nødvendig i clinching og det er en kald arbeidsprosess. Det er en økonomisk prosess som kan erstatte punktsveising i noen tilfeller. I PINNING bruker vi pinner som er maskinelementer som brukes til å sikre posisjoner av maskindeler i forhold til hverandre. Hovedtyper er gaffelstifter, splinter, fjærstifter, pluggstifter,  og deltapp. I STAPLING bruker vi stiftepistoler og stifter som er to-trådet festemidler som brukes til å skjøte eller binde materialer. Stifting har følgende fordeler: Økonomisk, enkel og rask å bruke, kronen på stiftene kan brukes til å bygge bro over materialer som er stukket sammen, Kronen på stiften kan gjøre det lettere å bygge bro over et stykke som en kabel og feste det til en overflate uten å punktere eller skadelig, relativt enkel fjerning. PRESSMONTERING utføres ved å skyve deler sammen og friksjonen mellom dem fester delene. Presspasningsdeler som består av et overdimensjonert skaft og et underdimensjonert hull, settes vanligvis sammen på en av to metoder: Enten ved å påføre kraft eller dra nytte av termisk ekspansjon eller sammentrekning av delene.  Når en pressfitting etableres ved å påføre en kraft, bruker vi enten en hydraulisk presse eller en hånddrevet presse. På den annen side, når pressfitting etableres ved termisk ekspansjon, varmer vi opp de omsluttende delene og monterer dem på plass mens de er varme. Når de avkjøles trekker de seg sammen og kommer tilbake til sine normale dimensjoner. Dette resulterer i en god presspasning. Vi kaller dette alternativt SHRINK-FITTING. Den andre måten å gjøre dette på er ved å avkjøle de omsluttede delene før montering og deretter skyve dem inn i deres sammenkoblede deler. Når monteringen varmes opp utvider de seg og vi får en tett passform. Sistnevnte metode kan være å foretrekke i tilfeller der oppvarming utgjør en risiko for endring av materialegenskaper. Avkjøling er tryggere i slike tilfeller.  

 

Pneumatiske og hydrauliske komponenter og sammenstillinger
• Ventiler, hydrauliske og pneumatiske komponenter som O-ring, skive, tetninger, pakning, ring, shim.
Siden ventiler og pneumatiske komponenter kommer i et stort utvalg, kan vi ikke liste opp alt her. Avhengig av de fysiske og kjemiske miljøene i applikasjonen din, har vi spesialprodukter for deg. Vennligst spesifiser oss applikasjon, type komponent, spesifikasjoner, miljøforhold som trykk, temperatur, væsker eller gasser som vil være i kontakt med dine ventiler og pneumatiske komponenter; og vi vil velge det mest passende produktet for deg eller produsere det spesielt for din applikasjon.

bottom of page