Globalny producent na zamówienie, integrator, konsolidator, partner outsourcingowy w zakresie szerokiej gamy produktów i usług.
Jesteśmy Twoim źródłem kompleksowej obsługi w zakresie produkcji, wytwarzania, inżynierii, konsolidacji, integracji, outsourcingu produktów i usług produkowanych na zamówienie oraz gotowych.
Choose your Language
-
Produkcja na zamówienie
-
Produkcja kontraktowa w kraju i na świecie
-
Outsourcing produkcji
-
Zamówienia krajowe i globalne
-
Konsolidacja
-
Integracja inżynierska
-
Usługi inżynieryjne
Wśród naszych przyrządów testowych do powlekania i oceny powierzchni są MIERNIKI GRUBOŚCI POWŁOKI, TESTERY SZORSTOŚCI POWIERZCHNI, MIERNIKI POŁYSKU, CZYTNIKI KOLORÓW, MIERNIK RÓŻNIC KOLORÓW, MIKROSKOPY METALURGICZNE, MIKROSKOPERY ODWRÓCONE. Naszym głównym celem jest NIENISZCZĄCE METODY TESTOWE. Wykonujemy wysokiej jakości marki takie jak SADTand MITECH.
Duża część wszystkich otaczających nas powierzchni jest pokryta powłoką. Powłoki służą wielu celom, w tym dobremu wyglądowi, ochronie i nadaniu produktom określonej pożądanej funkcjonalności, takiej jak hydrofobowość, zwiększone tarcie, odporność na zużycie i ścieranie… itd. Dlatego niezwykle ważne jest, aby móc mierzyć, testować i oceniać właściwości oraz jakość powłok i powierzchni produktów. Powłoki można ogólnie podzielić na dwie główne grupy, biorąc pod uwagę grubości: THICK FILM and THS FILM.
Aby pobrać katalog naszych urządzeń metrologicznych i badawczych marki SADT, KLIKNIJ TUTAJ. W tym katalogu znajdziesz niektóre z tych przyrządów do oceny powierzchni i powłok.
Aby pobrać broszurę dotyczącą miernika grubości powłoki Mitech model MCT200, KLIKNIJ TUTAJ.
Niektóre z instrumentów i technik stosowanych do takich celów to:
MIERNIK GRUBOŚCI POWŁOKI : Różne rodzaje powłok wymagają różnych typów testerów powłok. Podstawowe zrozumienie różnych technik jest zatem niezbędne, aby użytkownik mógł wybrać odpowiedni sprzęt. W Indukcja magnetyczna Metoda pomiaru grubości powłoki mierzymy powłoki niemagnetyczne na podłożach żelaznych i powłoki magnetyczne na podłożach niemagnetycznych. Sonda jest umieszczana na próbce i mierzona jest odległość liniowa między końcówką sondy stykającą się z powierzchnią a podłożem podstawowym. Wewnątrz sondy pomiarowej znajduje się cewka, która generuje zmienne pole magnetyczne. Po umieszczeniu sondy na próbce indukcja magnetyczna tego pola zmienia się w zależności od grubości powłoki magnetycznej lub obecności podłoża magnetycznego. Zmiana indukcyjności magnetycznej jest mierzona przez cewkę wtórną na sondzie. Sygnał wyjściowy cewki wtórnej jest przekazywany do mikroprocesora, gdzie jest pokazywany jako pomiar grubości powłoki na wyświetlaczu cyfrowym. Ten szybki test jest odpowiedni dla powłok płynnych lub proszkowych, powłok takich jak chrom, cynk, kadm lub fosforan na podłożach stalowych lub żelaznych. Do tej metody nadają się powłoki takie jak farba lub proszek o grubości powyżej 0,1 mm. Metoda indukcji magnetycznej nie jest odpowiednia dla powłok niklowych na stali ze względu na częściowe właściwości magnetyczne niklu. W przypadku tych powłok bardziej odpowiednia jest metoda prądów wirowych czuła na fazę. Innym rodzajem powłoki, w której metoda indukcji magnetycznej jest podatna na awarie, jest stal ocynkowana. Sonda odczyta grubość równą grubości całkowitej. Nowsze modele przyrządów są zdolne do samokalibracji poprzez wykrywanie materiału podłoża przez powłokę. Jest to oczywiście bardzo pomocne, gdy nagie podłoże nie jest dostępne lub gdy materiał podłoża jest nieznany. Tańsze wersje sprzętu wymagają jednak kalibracji przyrządu na gołym i niepowlekanym podłożu. The Eddy Current Metoda pomiaru grubości powłoki mierzy nieprzewodzące powłoki na nieżelaznych podłożach przewodzących, nieżelazne powłoki przewodzące na nieprzewodzących podłożach i niektóre powłoki z metali nieżelaznych na metalach nieżelaznych. Jest ona podobna do wspomnianej wcześniej metody indukcyjno-magnetycznej, zawierającej cewkę i podobne sondy. Cewka w metodzie prądów wirowych pełni podwójną funkcję wzbudzenia i pomiaru. Ta cewka sondy jest napędzana przez oscylator wysokiej częstotliwości, aby wygenerować przemienne pole wysokiej częstotliwości. Po umieszczeniu w pobliżu metalowego przewodnika w przewodniku generowane są prądy wirowe. Zmiana impedancji następuje w cewce sondy. Odległość między cewką sondy a przewodzącym materiałem podłoża określa wielkość zmiany impedancji, która może być zmierzona, skorelowana z grubością powłoki i wyświetlona w postaci odczytu cyfrowego. Zastosowania obejmują malowanie płynne lub proszkowe na aluminium i niemagnetycznej stali nierdzewnej oraz anodowanie aluminium. Niezawodność tej metody zależy od geometrii części i grubości powłoki. Podłoże musi być znane przed wykonaniem odczytów. Sondy wiroprądowe nie powinny być używane do pomiaru powłok niemagnetycznych na podłożach magnetycznych, takich jak stal i nikiel na podłożach aluminiowych. Jeśli użytkownicy muszą mierzyć powłoki na magnetycznych lub nieżelaznych podłożach przewodzących, najlepiej będzie im służyć podwójny miernik indukcji magnetycznej/prądu wirowego, który automatycznie rozpoznaje podłoże. Trzecia metoda, zwana the Coulometric metoda pomiaru grubości powłoki, to niszcząca metoda testowania, która pełni wiele ważnych funkcji. Jednym z głównych zastosowań jest pomiar powłok niklowych typu duplex w przemyśle motoryzacyjnym. W metodzie kulometrycznej wagę obszaru o znanej wielkości na metalicznej powłoce określa się poprzez miejscowe anodowe zdzieranie powłoki. Następnie obliczana jest masa na jednostkę powierzchni grubości powłoki. Ten pomiar na powłoce jest wykonywany za pomocą elektrolizera, który jest wypełniony elektrolitem specjalnie dobranym do usunięcia konkretnej powłoki. Przez komorę testową przepływa prąd stały, a ponieważ materiał powlekający służy jako anoda, ulega on zniszczeniu. Gęstość prądu i pole powierzchni są stałe, a zatem grubość powłoki jest proporcjonalna do czasu potrzebnego do usunięcia i zdjęcia powłoki. Metoda ta jest bardzo przydatna do pomiaru powłok przewodzących prąd elektryczny na podłożu przewodzącym. Metodę kulometryczną można również wykorzystać do określenia grubości powłoki wielu warstw na próbce. Na przykład grubość niklu i miedzi można zmierzyć na części z wierzchnią powłoką z niklu i pośrednią powłoką miedzianą na podłożu stalowym. Innym przykładem powłoki wielowarstwowej jest chrom na niklu na miedzi na wierzchu plastikowego podłoża. Metoda badania kulometrycznego jest popularna w galwanizerniach z niewielką liczbą próbek losowych. Jednak czwartą metodą jest metoda Beta Backscatter do pomiaru grubości powłok. Izotop emitujący promieniowanie beta naświetla próbkę testową cząstkami beta. Wiązka cząstek beta jest kierowana przez otwór na powlekany element, a część tych cząstek jest rozpraszana wstecznie zgodnie z oczekiwaniami od powłoki przez otwór, aby przebić się przez cienkie okienko rurki Geigera Mullera. Gaz w rurce Geigera Mullera ulega jonizacji, powodując chwilowe wyładowanie na elektrodach rurki. Wyładowanie w postaci impulsu jest zliczane i przekładane na grubość powłoki. Materiały o wysokich liczbach atomowych bardziej rozpraszają cząstki beta. W przypadku próbki z miedzią jako podłożem i warstwą złota o grubości 40 mikronów cząstki beta są rozpraszane zarówno przez podłoże, jak i materiał powłoki. Jeśli grubość złotej powłoki wzrasta, wzrasta również współczynnik rozproszenia wstecznego. Zmiana szybkości rozpraszania cząstek jest zatem miarą grubości powłoki. Zastosowania, które są odpowiednie dla metody rozpraszania wstecznego beta, to te, w których liczba atomowa powłoki i podłoża różni się o 20 procent. Należą do nich złoto, srebro lub cyna na elementach elektronicznych, powłoki na obrabiarkach, powłoki dekoracyjne na armaturze, powłoki naparowane na elementach elektronicznych, ceramice i szkle, powłoki organiczne, takie jak olej lub smar na metalach. Metoda rozproszenia wstecznego beta jest przydatna w przypadku grubszych powłok oraz kombinacji podłoża i powłoki, w przypadku których metody indukcji magnetycznej lub prądów wirowych nie działają. Zmiany w stopach wpływają na metodę rozpraszania wstecznego beta, a do kompensacji mogą być wymagane różne izotopy i wielokrotne kalibracje. Przykładem może być cyna/ołów nad miedzią lub cyna nad fosforem/brązem, dobrze znane w płytkach drukowanych i kołkach stykowych, aw tych przypadkach zmiany w stopach można lepiej mierzyć droższą metodą fluorescencji rentgenowskiej. The Metoda fluorescencji rentgenowskiej do pomiaru grubości powłoki jest metodą bezkontaktową, która pozwala na pomiar bardzo cienkich wielowarstwowych powłok stopowych na małych i złożonych częściach. Części są wystawione na promieniowanie rentgenowskie. Kolimator skupia promienie rentgenowskie na dokładnie określonym obszarze badanej próbki. To promieniowanie rentgenowskie powoduje charakterystyczną emisję promieniowania rentgenowskiego (tj. fluorescencję) zarówno z powłoki, jak i materiału podłoża próbki testowej. Ta charakterystyczna emisja promieniowania rentgenowskiego jest wykrywana za pomocą detektora dyspersyjnego energii. Za pomocą odpowiedniej elektroniki można zarejestrować jedynie emisję promieniowania rentgenowskiego z materiału powłokowego lub podłoża. Możliwe jest również selektywne wykrycie określonej powłoki, gdy obecne są warstwy pośrednie. Ta technika jest szeroko stosowana na obwodach drukowanych, biżuterii i elementach optycznych. Fluorescencja rentgenowska nie nadaje się do powłok organicznych. Zmierzona grubość powłoki nie powinna przekraczać 0,5-0,8 milicali. Jednak w przeciwieństwie do metody rozpraszania wstecznego beta, fluorescencja rentgenowska może mierzyć powłoki o podobnych liczbach atomowych (na przykład nikiel nad miedzią). Jak wspomniano wcześniej, różne stopy wpływają na kalibrację przyrządu. Analiza materiału bazowego i grubości powłoki ma kluczowe znaczenie dla zapewnienia precyzyjnych odczytów. Dzisiejsze systemy i oprogramowanie zmniejszają potrzebę wielokrotnych kalibracji bez utraty jakości. Na koniec warto wspomnieć, że istnieją przyrządy, które mogą działać w kilku z wyżej wymienionych trybów. Niektóre mają odłączane sondy, co zapewnia elastyczność w użyciu. Wiele z tych nowoczesnych przyrządów oferuje możliwości analizy statystycznej do kontroli procesu i minimalne wymagania kalibracyjne, nawet jeśli są używane na różnie ukształtowanych powierzchniach lub różnych materiałach.
TESTERY SZORSTKI POWIERZCHNI : Chropowatość powierzchni jest określana ilościowo przez odchylenia w kierunku wektora normalnego powierzchni od jej idealnej formy. Jeśli te odchylenia są duże, powierzchnia jest uważana za szorstka; jeśli są małe, powierzchnia jest uważana za gładką. Dostępne na rynku przyrządy o nazwie SURFACE PROFILOMETERS są używane do pomiaru i rejestracji chropowatości powierzchni. Jednym z powszechnie używanych instrumentów jest diamentowa igła poruszająca się po linii prostej po powierzchni. Przyrządy rejestrujące są w stanie skompensować wszelkie falistości powierzchni i wskazać tylko chropowatość. Chropowatość powierzchni można obserwować za pomocą a.) interferometrii i b.) mikroskopii optycznej, mikroskopii elektronowej skaningowej, mikroskopii laserowej lub mikroskopii sił atomowych (AFM). Techniki mikroskopowe są szczególnie przydatne do obrazowania bardzo gładkich powierzchni, których cechy nie mogą być uchwycone przez mniej czułe instrumenty. Zdjęcia stereoskopowe są przydatne do trójwymiarowych widoków powierzchni i mogą być wykorzystywane do pomiaru chropowatości powierzchni. Pomiary powierzchni 3D można wykonać trzema metodami. Światło z an optical-interference microscope świeci na powierzchnię odbijającą i rejestruje prążki interferencyjne wynikające z padającego i odbitego fal. 5cde-3194-bb3b-136bad5cf58d_są używane do pomiaru powierzchni za pomocą technik interferometrycznych lub poprzez przesuwanie obiektywu w celu utrzymania stałej ogniskowej na powierzchni. Ruch soczewki jest wtedy miarą powierzchni. Wreszcie trzecia metoda, a mianowicie mikroskop atomic-force, służy do pomiaru wyjątkowo gładkich powierzchni w skali atomowej. Innymi słowy, za pomocą tego sprzętu można rozróżnić nawet atomy na powierzchni. Ten wyrafinowany i stosunkowo drogi sprzęt skanuje powierzchnie próbek o powierzchni mniejszej niż 100 mikronów kwadratowych.
MIERNIKI POŁYSKU, CZYTNIKI KOLORÓW, MIERNIK RÓŻNIC KOLORÓW : A GLOSSMETER mierzy połysk odbicia lustrzanego powierzchni. Miarę połysku uzyskuje się rzucając wiązkę światła o stałym natężeniu i kącie na powierzchnię i mierząc odbitą ilość pod równym, ale przeciwnym kątem. Mierniki połysku są używane na różnych materiałach, takich jak farba, ceramika, papier, metal i powierzchnie produktów z tworzyw sztucznych. Pomiar połysku może służyć firmom w zapewnieniu jakości ich produktów. Dobre praktyki produkcyjne wymagają spójności procesów, w tym spójnego wykończenia powierzchni i wyglądu. Pomiary połysku są przeprowadzane w wielu różnych geometriach. Zależy to od materiału powierzchni. Na przykład metale mają wysoki poziom odbicia, a zatem zależność kątowa jest mniejsza w porównaniu z niemetalami, takimi jak powłoki i tworzywa sztuczne, gdzie zależność kątowa jest wyższa ze względu na rozpraszanie rozproszone i absorpcję. Konfiguracja źródła światła i kątów odbioru obserwacji umożliwia pomiar w małym zakresie całkowitego kąta odbicia. Wyniki pomiaru połyskomierza są związane z ilością światła odbitego od wzorca czarnego szkła o określonym współczynniku załamania. Stosunek światła odbitego do światła padającego dla próbki testowej, w porównaniu ze stosunkiem dla standardu połysku, zapisuje się jako jednostki połysku (GU). Kąt pomiaru odnosi się do kąta między światłem padającym a odbitym. W przypadku większości powłok przemysłowych stosowane są trzy kąty pomiaru (20°, 60° i 85°).
Kąt dobierany jest na podstawie przewidywanego zakresu połysku i w zależności od pomiaru podejmowane są następujące działania:
Zakres połysku ........60° Wartość ....... Działanie
Wysoki połysk..........>70 GU..........Jeśli pomiar przekracza 70 GU, zmień ustawienie testu na 20°, aby zoptymalizować dokładność pomiaru.
Średni połysk........10 - 70 GU
Niski połysk....<10 GU...........Jeżeli pomiar jest mniejszy niż 10 GU, zmień ustawienia testu na 85°, aby zoptymalizować dokładność pomiaru.
Na rynku dostępne są trzy typy instrumentów: instrumenty o pojedynczym kącie 60°, typ o podwójnym kącie łączący 20° i 60° oraz typ o potrójnym kącie łączący 20°, 60° i 85°. Dla innych materiałów stosowane są dwa dodatkowe kąty, kąt 45° jest określony dla pomiaru ceramiki, folii, tekstyliów i anodowanego aluminium, natomiast kąt pomiaru 75° jest określony dla papieru i materiałów drukowanych. A COLOR READER lub określany również jako COLORIMETER_cc781905-5cde-336bad5-bb3b-136bada długości fali świetlnej danego urządzenia konkretne rozwiązanie. Kolorymetry są najczęściej używane do określenia stężenia znanej substancji rozpuszczonej w danym roztworze poprzez zastosowanie prawa Beera-Lamberta, które mówi, że stężenie substancji rozpuszczonej jest proporcjonalne do absorbancji. Nasze przenośne czytniki kolorów mogą być również używane na plastiku, malowaniu, poszyciu, tekstyliach, drukowaniu, wytwarzaniu barwników, żywności, takiej jak masło, frytki, kawa, wypieki i pomidory… itd. Mogą z nich korzystać amatorzy, którzy nie mają fachowej wiedzy na temat kolorów. Ponieważ istnieje wiele typów czytników kolorów, aplikacje są nieograniczone. W kontroli jakości stosuje się je głównie w celu upewnienia się, że próbki mieszczą się w ustalonych przez użytkownika tolerancjach kolorystycznych. Jako przykład można podać ręczne kolorymetry do pomidorów, które wykorzystują wskaźnik zatwierdzony przez USDA do pomiaru i klasyfikowania koloru przetworzonych produktów pomidorowych. Jeszcze innym przykładem są ręczne kolorymetry do kawy zaprojektowane specjalnie do pomiaru koloru całych zielonych ziaren, palonych ziaren i palonej kawy przy użyciu standardowych pomiarów przemysłowych. Nasze MIARKI RÓŻNIC KOLORÓW wyświetlają bezpośrednio różnicę kolorów według E*ab, L*a*b, CIE_L*a*b, CIE_L*c*h. Odchylenie standardowe mieści się w granicach E*ab0.2. Działają na dowolnym kolorze, a testowanie zajmuje tylko kilka sekund.
MIKROSKOPY METALURGICZNE and MIKROSKOP ODWRÓCONY METALLOGRAFICZNY . Metale są substancjami nieprzezroczystymi i dlatego muszą być oświetlone światłem czołowym. Dlatego źródło światła znajduje się w tubusie mikroskopu. W tubie zamontowany jest zwykły szklany odbłyśnik. Typowe powiększenia mikroskopów metalurgicznych mieszczą się w zakresie x50 – x1000. Oświetlenie jasnego pola służy do tworzenia obrazów z jasnym tłem i ciemnymi, niepłaskimi cechami struktury, takimi jak pory, krawędzie i wytrawione granice ziaren. Oświetlenie ciemnego pola służy do tworzenia obrazów z ciemnym tłem i jasnymi, niepłaskimi cechami struktury, takimi jak pory, krawędzie i wytrawione granice ziaren. Światło spolaryzowane służy do oglądania metali o niesześciennej strukturze krystalicznej, takich jak magnez, alfa-tytan i cynk, reagujących na światło spolaryzowane krzyżowo. Światło spolaryzowane jest wytwarzane przez polaryzator umieszczony przed oświetlaczem i analizatorem oraz umieszczony przed okularem. Pryzmat Nomarsky'ego jest używany do różnicowego kontrastu interferencyjnego, który umożliwia obserwację obiektów niewidocznych w jasnym polu. INVERTED METALLOGRAPHIC MICROSCOPES mają źródło światła i kondensor na górze , nad sceną skierowaną w dół, podczas gdy cele i wieża znajdują się pod sceną skierowaną w górę. Mikroskopy odwrócone są przydatne do obserwacji cech na dnie dużego pojemnika w bardziej naturalnych warunkach niż na szkiełku podstawowym, jak ma to miejsce w przypadku konwencjonalnego mikroskopu. Mikroskopy odwrócone są używane w zastosowaniach metalurgicznych, gdzie wypolerowane próbki można umieszczać na stole i oglądać od spodu za pomocą lustrzanych obiektywów, a także w zastosowaniach mikromanipulacyjnych, gdzie przestrzeń nad próbką jest wymagana dla mechanizmów manipulatora i trzymanych w nich mikronarzędzi.
Oto krótkie podsumowanie niektórych naszych przyrządów testowych do oceny powierzchni i powłok. Możesz pobrać ich szczegóły z linków do katalogu produktów podanych powyżej.
Tester chropowatości powierzchni SADT RoughScan : Jest to przenośny, zasilany bateryjnie przyrząd do sprawdzania chropowatości powierzchni za pomocą zmierzonych wartości wyświetlanych na odczycie cyfrowym. Przyrząd jest łatwy w użyciu i może być używany w laboratorium, środowiskach produkcyjnych, w sklepach i wszędzie tam, gdzie wymagane jest badanie chropowatości powierzchni.
Mierniki połysku SADT GT SERIES : Mierniki połysku serii GT są projektowane i produkowane zgodnie z międzynarodowymi normami ISO2813, ASTMD523 i DIN67530. Parametry techniczne zgodne z JJG696-2002. Miernik połysku GT45 jest specjalnie zaprojektowany do pomiaru folii z tworzyw sztucznych i ceramiki, małych powierzchni i zakrzywionych powierzchni.
SERIA SADT GMS/GM60 Mierniki połysku : Te mierniki połysku zostały zaprojektowane i wyprodukowane zgodnie z międzynarodowymi normami ISO2813, ISO7668, ASTM D523, ASTM D2457. Parametry techniczne są również zgodne z JJG696-2002. Nasze mierniki połysku serii GM doskonale nadają się do pomiaru malowania, powłok, tworzyw sztucznych, ceramiki, wyrobów skórzanych, papieru, materiałów drukowanych, wykładzin podłogowych… itd. Ma atrakcyjną i przyjazną dla użytkownika konstrukcję, dane o połysku pod trzema kątami są wyświetlane jednocześnie, dużą pamięć na dane pomiarowe, najnowszą funkcję Bluetooth i wyjmowaną kartę pamięci do wygodnego przesyłania danych, specjalne oprogramowanie do analizy połysku do analizy danych wyjściowych, niski poziom naładowania baterii i pełna pamięć wskaźnik. Dzięki wewnętrznemu modułowi bluetooth i interfejsowi USB, mierniki połysku GM mogą przesyłać dane do komputera lub eksportować do drukarki za pośrednictwem interfejsu drukowania. Korzystając z opcjonalnych kart SD, pamięć można dowolnie rozszerzać.
Precyzyjny czytnik kolorów SADT SC 80 : Ten czytnik kolorów jest najczęściej używany na tworzywach sztucznych, obrazach, poszyciach, tekstyliach i kostiumach, produktach drukowanych oraz w przemyśle produkcji barwników. Jest w stanie przeprowadzić analizę kolorystyczną. Kolorowy ekran 2,4” i przenośna konstrukcja zapewniają wygodę użytkowania. Trzy rodzaje źródeł światła do wyboru przez użytkownika, przełącznik trybu SCI i SCE oraz analiza metameryzmu zaspokoją Twoje potrzeby testowe w różnych warunkach pracy. Ustawienie tolerancji, automatyczne ocenianie wartości różnicy kolorów i funkcje odchylenia kolorów sprawiają, że łatwo określasz kolor, nawet jeśli nie masz profesjonalnej wiedzy na temat kolorów. Korzystając z profesjonalnego oprogramowania do analizy kolorów, użytkownicy mogą przeprowadzać analizę danych kolorów i obserwować różnice kolorów na diagramach wyjściowych. Opcjonalna minidrukarka umożliwia użytkownikom drukowanie danych w kolorze na miejscu.
Przenośny miernik różnicy kolorów SADT SC 20 : Ten przenośny miernik różnicy kolorów jest szeroko stosowany w kontroli jakości produktów z tworzyw sztucznych i druku. Służy do wydajnego i dokładnego uchwycenia koloru. Łatwy w obsłudze, wyświetla różnicę kolorów według E*ab, L*a*b, CIE_L*a*b, CIE_L*c*h., odchylenie standardowe w granicach E*ab0.2, może być podłączony do komputera przez rozszerzenie USB interfejs do kontroli przez oprogramowanie.
Mikroskop metalurgiczny SADT SM500 : Jest to samodzielny przenośny mikroskop metalurgiczny idealnie nadający się do metalograficznej oceny metali w laboratorium lub na miejscu. Przenośna konstrukcja i unikalny stojak magnetyczny, SM500 można przymocować bezpośrednio do powierzchni metali żelaznych pod dowolnym kątem, płaskością, krzywizną i złożonością powierzchni w celu przeprowadzenia badań nieniszczących. SADT SM500 może być również używany z aparatem cyfrowym lub systemem przetwarzania obrazu CCD do przesyłania obrazów metalurgicznych do komputera w celu przesyłania danych, analizy, przechowywania i wydruku. Jest to w zasadzie przenośne laboratorium metalurgiczne z przygotowaniem próbek na miejscu, mikroskopem, kamerą i bez potrzeby zasilania prądem przemiennym w terenie. Naturalne kolory bez konieczności zmiany światła poprzez przyciemnianie oświetlenia LED zapewnia najlepszy obraz obserwowany w dowolnym momencie. Przyrząd posiada opcjonalne akcesoria, w tym dodatkowy statyw na małe próbki, adapter aparatu cyfrowego z okularem, CCD z interfejsem, okular 5x/10x/15x/16x, obiektyw 4x/5x/20x/25x/40x/100x, miniszlifierkę, polerkę elektrolityczną, komplet głowic do kół, ściernica polerska, folia do replik, filtr (zielony, niebieski, żółty), żarówka.
Przenośny mikroskop metalurgiczny SADT Model SM-3 : Ten instrument oferuje specjalną podstawę magnetyczną, mocującą urządzenie mocno na obrabianych elementach, nadaje się do testów rolek na dużą skalę i bezpośredniej obserwacji, bez cięcia i wymagane próbkowanie, oświetlenie LED, równomierna temperatura barwowa, brak ogrzewania, mechanizm ruchu przód/tył i lewo/prawo, wygodna regulacja punktu inspekcyjnego, adapter do podłączenia kamer cyfrowych i obserwacji nagrań bezpośrednio na komputerze. Akcesoria opcjonalne są podobne do modelu SADT SM500. Aby uzyskać szczegółowe informacje, pobierz katalog produktów z powyższego linku.
Mikroskop metalurgiczny SADT Model XJP-6A : Ten metaloskop może być z łatwością używany w fabrykach, szkołach, instytucjach naukowych do identyfikacji i analizy mikrostruktury wszelkiego rodzaju metali i stopów. Jest idealnym narzędziem do badania materiałów metalowych, weryfikacji jakości odlewów oraz analizy struktury metalograficznej materiałów metalizowanych.
Odwrócony mikroskop metalograficzny SADT Model SM400 : Konstrukcja umożliwia badanie ziaren próbek metalurgicznych. Łatwy montaż na linii produkcyjnej i łatwy do przenoszenia. SM400 nadaje się do szkół wyższych i fabryk. Dostępny jest również adapter do mocowania aparatu cyfrowego do tubusu trinokularnego. Ten tryb wymaga MI metalograficznego drukowania obrazu o stałych rozmiarach. Posiadamy szeroki wybór adapterów CCD do wydruku komputerowego o standardowym powiększeniu i ponad 60% widoku obserwacji.
Odwrócony mikroskop metalograficzny SADT Model SD300M : Optyka z nieskończonym ogniskowaniem zapewnia obrazy o wysokiej rozdzielczości. Obiektyw do obserwacji z dużej odległości, pole widzenia o szerokości 20 mm, trójpłytowy stolik mechaniczny akceptujący prawie każdy rozmiar próbki, duże obciążenia i umożliwiający nieniszczące badanie mikroskopowe dużych elementów. Trójpłytkowa konstrukcja zapewnia stabilność i trwałość mikroskopu. Optyka zapewnia wysoką NA i dużą odległość widzenia, zapewniając jasne obrazy o wysokiej rozdzielczości. Nowa powłoka optyczna SD300M jest odporna na kurz i wilgoć.
Aby uzyskać szczegółowe informacje i podobny sprzęt, odwiedź naszą stronę internetową poświęconą sprzętowi: http://www.sourceindustrialsupply.com